These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35313384)
1. Susceptibility artifact correction in MR thermometry for monitoring of mild radiofrequency hyperthermia using total field inversion. Boehm C; Goeger-Neff M; Mulder HT; Zilles B; Lindner LH; van Rhoon GC; Karampinos DC; Wu M Magn Reson Med; 2022 Jul; 88(1):120-132. PubMed ID: 35313384 [TBL] [Abstract][Full Text] [Related]
2. Correction of motion-induced susceptibility artifacts and B Wu M; Mulder HT; Baron P; Coello E; Menzel MI; van Rhoon GC; Haase A Magn Reson Med; 2020 Nov; 84(5):2495-2511. PubMed ID: 32367530 [TBL] [Abstract][Full Text] [Related]
3. Integrated thermal and magnetic susceptibility modeling for air-motion artifact correction in proton resonance frequency shift thermometry. Nouwens SAN; Paulides MM; Fölker J; VilasBoas-Ribeiro I; de Jager B; Heemels WPMH Int J Hyperthermia; 2022; 39(1):967-976. PubMed ID: 35853735 [TBL] [Abstract][Full Text] [Related]
4. POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia. VilasBoas-Ribeiro I; Nouwens SAN; Curto S; Jager B; Franckena M; van Rhoon GC; Heemels WPMH; Paulides MM Med Phys; 2022 Aug; 49(8):4955-4970. PubMed ID: 35717578 [TBL] [Abstract][Full Text] [Related]
5. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Bing C; Staruch RM; Tillander M; Köhler MO; Mougenot C; Ylihautala M; Laetsch TW; Chopra R Int J Hyperthermia; 2016 Sep; 32(6):673-87. PubMed ID: 27210733 [TBL] [Abstract][Full Text] [Related]
6. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T. Chen Y; Ge M; Ali R; Jiang H; Huang X; Qiu B Biomed Eng Online; 2018 Apr; 17(1):39. PubMed ID: 29631576 [TBL] [Abstract][Full Text] [Related]
7. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470 [TBL] [Abstract][Full Text] [Related]
8. Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions. Sprinkhuizen SM; Konings MK; van der Bom MJ; Viergever MA; Bakker CJ; Bartels LW Magn Reson Med; 2010 Nov; 64(5):1360-72. PubMed ID: 20648685 [TBL] [Abstract][Full Text] [Related]
9. Correction of breathing-induced errors in magnetic resonance thermometry of hyperthermia using multiecho field fitting techniques. Wyatt CR; Soher BJ; MacFall JR Med Phys; 2010 Dec; 37(12):6300-9. PubMed ID: 21302786 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. Carter DL; MacFall JR; Clegg ST; Wan X; Prescott DM; Charles HC; Samulski TV Int J Radiat Oncol Biol Phys; 1998 Mar; 40(4):815-22. PubMed ID: 9531365 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal filtering of MR-temperature artifacts arising from bowel motion during transurethral MR-HIFU. Schmitt A; Mougenot C; Chopra R Med Phys; 2014 Nov; 41(11):113302. PubMed ID: 25370670 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and selection of anatomic sites for magnetic resonance imaging-guided mild hyperthermia therapy: a healthy volunteer study. V V N Kothapalli S; Altman MB; Zhu L; Partanen A; Cheng G; Gach HM; Straube W; Zoberi I; Hallahan DE; Chen H Int J Hyperthermia; 2018 Dec; 34(8):1381-1389. PubMed ID: 29301453 [TBL] [Abstract][Full Text] [Related]
13. Technical advances in motion-robust MR thermometry. Kim K; Narsinh K; Ozhinsky E Magn Reson Med; 2024 Jul; 92(1):15-27. PubMed ID: 38501903 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Artifacts and Optimization in Proton Resonance Frequency Thermometry Towards Heating Risk Monitoring of Implantable Medical Devices in Magnetic Resonance Imaging. Zhang F; Jiang C; Li Y; Niu X; Long T; He C; Ding J; Li L; Li L IEEE Trans Biomed Eng; 2021 Dec; 68(12):3638-3646. PubMed ID: 34003743 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS; Lee SY Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005 [TBL] [Abstract][Full Text] [Related]
16. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Feddersen TV; Poot DHJ; Paulides MM; Salim G; van Rhoon GC; Hernandez-Tamames JA Int J Hyperthermia; 2023; 40(1):2184399. PubMed ID: 36907223 [TBL] [Abstract][Full Text] [Related]
17. Motion compensation using principal component analysis and projection onto dipole fields for abdominal magnetic resonance thermometry. Tan J; Mougenot C; Pichardo S; Drake JM; Waspe AC Magn Reson Med; 2019 Jan; 81(1):195-207. PubMed ID: 30058167 [TBL] [Abstract][Full Text] [Related]
18. A phase-cycled temperature-sensitive fast spin echo sequence with conductivity bias correction for monitoring of mild RF hyperthermia with PRFS. Wu M; Mulder HT; Zur Y; Lechner-Greite S; Menzel MI; Paulides MM; van Rhoon GC; Haase A MAGMA; 2019 Jun; 32(3):369-380. PubMed ID: 30515641 [TBL] [Abstract][Full Text] [Related]
19. Preconditioned water-fat total field inversion: Application to spine quantitative susceptibility mapping. Boehm C; Sollmann N; Meineke J; Ruschke S; Dieckmeyer M; Weiss K; Zimmer C; Makowski MR; Baum T; Karampinos DC Magn Reson Med; 2022 Jan; 87(1):417-430. PubMed ID: 34255370 [TBL] [Abstract][Full Text] [Related]
20. An augmented hybrid multibaseline and referenceless MR thermometry motion compensation algorithm for MRgHIFU hyperthermia. Wong SM; Akbulatov A; Macsemchuk CA; Headrick A; Luo P; Drake JM; Waspe AC Magn Reson Med; 2024 Jun; 91(6):2266-2277. PubMed ID: 38181187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]