These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3531378)

  • 1. A potential role for spectrin during neurulation.
    Sadler TW; Burridge K; Yonker J
    J Embryol Exp Morphol; 1986 Jun; 94():73-82. PubMed ID: 3531378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells.
    Lee HY; Nagele RG
    J Exp Zool; 1985 Aug; 235(2):205-15. PubMed ID: 3903030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanisms of neurulation in the chick: possible involvement of myosin in elevation of neural folds.
    Lee HY; Kosciuk MC; Nagele RG; Roisen FJ
    J Exp Zool; 1983 Mar; 225(3):449-57. PubMed ID: 6341501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reexamination of the role of microfilaments in neurulation in the chick embryo.
    Schoenwolf GC; Folsom D; Moe A
    Anat Rec; 1988 Jan; 220(1):87-102. PubMed ID: 3348489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments.
    Ybot-Gonzalez P; Copp AJ
    Dev Dyn; 1999 Jul; 215(3):273-83. PubMed ID: 10398537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D.
    Morriss-Kay G; Tuckett F
    J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographical changes along the neural fold associated with neurulation in the hamster and mouse.
    Waterman RE
    Am J Anat; 1976 Jun; 146(2):151-71. PubMed ID: 941847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium and neurulation in mammalian embryos. II. Effects of cytoskeletal inhibitors and calcium antagonists on the neural folds of rat embryos.
    Smedley MJ; Stanisstreet M
    J Embryol Exp Morphol; 1986 Apr; 93():167-78. PubMed ID: 3734682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
    Smith JL; Schoenwolf GC; Quan J
    J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin distribution patterns in the mouse neural tube during neurulation.
    Sadler TW; Greenberg D; Coughlin P; Lessard JL
    Science; 1982 Jan; 215(4529):172-4. PubMed ID: 7031898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of actin, myosin, and spectrin during enucleation in erythroid cells of hamster embryo.
    Takano-Ohmuro H; Mukaida M; Morioka K
    Cell Motil Cytoskeleton; 1996; 34(2):95-107. PubMed ID: 8769722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanisms of neurulation in the chick: morphometric analysis of the relationship between regional variations in cell shape and sites of motive force generation.
    Nagele RG; Lee HY
    J Exp Zool; 1987 Feb; 241(2):197-205. PubMed ID: 3559504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antispectrin antibodies stain the oocyte nucleus and the site of fertilization channels in the egg of Discoglossus pictus (Anura).
    Campanella C; Carotenuto R; Gabbiani G
    Mol Reprod Dev; 1990 Jun; 26(2):134-42. PubMed ID: 1695511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium regulation of neural fold formation: visualization of the actin cytoskeleton in living chick embryos.
    Ferreira MC; Hilfer SR
    Dev Biol; 1993 Oct; 159(2):427-40. PubMed ID: 8405669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical studies of spectrin in hamster cardiac tissue.
    Messina DA; Lemanski LF
    Cell Motil Cytoskeleton; 1989; 12(3):139-49. PubMed ID: 2653645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of extracellular material in chick neurulation. II. Surface morphology of neuroepithelial cells during neural fold fusion.
    Lee HY; Sheffield JB; Nagele RG
    J Exp Zool; 1978 May; 204(2):137-53. PubMed ID: 641485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunofluorescent patterns of spectrin in lymphocyte cell lines.
    Pauly JL; Bankert RB; Repasky EA
    J Immunol; 1986 Jan; 136(1):246-53. PubMed ID: 3510004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistep role for actin in initial closure of the mesencephalic neural groove in the chick embryo.
    van Straaten HW; Sieben I; Hekking JW
    Dev Dyn; 2002 May; 224(1):103-8. PubMed ID: 11984878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental studies of dystrophin and other cytoskeletal proteins in cultured muscle cells.
    Kobayashi T; Ohno S; Park-Matsumoto YC; Kameda N; Baba T
    Microsc Res Tech; 1995 Apr; 30(6):437-57. PubMed ID: 7599356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile proteins and nonerythroid spectrin in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Wartiovaara J; Vassetzky SG
    Mol Reprod Dev; 1994 Jan; 37(1):99-109. PubMed ID: 8129937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.