BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35313824)

  • 1. Evaluation of tree-based statistical learning methods for constructing genetic risk scores.
    Lau M; Wigmann C; Kress S; Schikowski T; Schwender H
    BMC Bioinformatics; 2022 Mar; 23(1):97. PubMed ID: 35313824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.
    Hüls A; Ickstadt K; Schikowski T; Krämer U
    BMC Genet; 2017 Jun; 18(1):55. PubMed ID: 28606108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient gene-environment interaction testing through bootstrap aggregating.
    Lau M; Kress S; Schikowski T; Schwender H
    Sci Rep; 2023 Jan; 13(1):937. PubMed ID: 36650248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.
    Hüls A; Krämer U; Carlsten C; Schikowski T; Ickstadt K; Schwender H
    BMC Genet; 2017 Dec; 18(1):115. PubMed ID: 29246113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Logic regression and its extensions.
    Schwender H; Ruczinski I
    Adv Genet; 2010; 72():25-45. PubMed ID: 21029847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.
    Chen CC; Schwender H; Keith J; Nunkesser R; Mengersen K; Macrossan P
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1580-91. PubMed ID: 21383421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle.
    Yao C; Spurlock DM; Armentano LE; Page CD; VandeHaar MJ; Bickhart DM; Weigel KA
    J Dairy Sci; 2013 Oct; 96(10):6716-29. PubMed ID: 23932129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effect of multiple genetic risk score models on colorectal cancer risk prediction.
    Xin J; Chu H; Ben S; Ge Y; Shao W; Zhao Y; Wei Y; Ma G; Li S; Gu D; Zhang Z; Du M; Wang M
    Gene; 2018 Oct; 673():174-180. PubMed ID: 29908285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions.
    Yoo W; Ference BA; Cote ML; Schwartz A
    Int J Appl Sci Technol; 2012 Aug; 2(7):268. PubMed ID: 23795347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
    Privé F; Aschard H; Blum MGB
    Genetics; 2019 May; 212(1):65-74. PubMed ID: 30808621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of SNP interactions using logic regression.
    Schwender H; Ickstadt K
    Biostatistics; 2008 Jan; 9(1):187-98. PubMed ID: 17578898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Missing single nucleotide polymorphisms in Genetic Risk Scores: A simulation study.
    Chagnon M; O'Loughlin J; Engert JC; Karp I; Sylvestre MP
    PLoS One; 2018; 13(7):e0200630. PubMed ID: 30024900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brief review of regression-based and machine learning methods in genetic epidemiology: the Genetic Analysis Workshop 17 experience.
    Dasgupta A; Sun YV; König IR; Bailey-Wilson JE; Malley JD
    Genet Epidemiol; 2011; 35 Suppl 1(Suppl 1):S5-11. PubMed ID: 22128059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium.
    Che R; Motsinger-Reif AA
    Front Genet; 2013; 4():138. PubMed ID: 23888168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual and joint contributions of genetic and methylation risk scores for enhancing lung cancer risk stratification: data from a population-based cohort in Germany.
    Yu H; Raut JR; Schöttker B; Holleczek B; Zhang Y; Brenner H
    Clin Epigenetics; 2020 Jun; 12(1):89. PubMed ID: 32552915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study.
    Meijsen JJ; Rammos A; Campbell A; Hayward C; Porteous DJ; Deary IJ; Marioni RE; Nicodemus KK
    Bioinformatics; 2019 Jan; 35(2):181-188. PubMed ID: 29931044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel repulsive logic regression with biological adjacency.
    Yoneoka D; Im C; Yasui Y
    Biostatistics; 2020 Oct; 21(4):825-844. PubMed ID: 31030217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.