These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35313896)

  • 1. Development of a controlled-environment assay to induce iron deficiency chlorosis in soybean by adjusting calcium carbonates, pH, and nodulation.
    Merry R; Espina MJ; Lorenz AJ; Stupar RM
    Plant Methods; 2022 Mar; 18(1):36. PubMed ID: 35313896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines.
    O'Rourke JA; Charlson DV; Gonzalez DO; Vodkin LO; Graham MA; Cianzio SR; Grusak MA; Shoemaker RC
    BMC Genomics; 2007 Dec; 8():476. PubMed ID: 18154662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress.
    Waters BM; Amundsen K; Graef G
    Front Plant Sci; 2018; 9():10. PubMed ID: 29403520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Fine-Mapping of a Soybean Quantitative Trait Locus on Chromosome 5 Conferring Tolerance to Iron Deficiency Chlorosis.
    Merry R; Butenhoff K; Campbell BW; Michno JM; Wang D; Orf JH; Lorenz AJ; Stupar RM
    Plant Genome; 2019 Nov; 12(3):1-13. PubMed ID: 33016589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system.
    Dobbels AA; Lorenz AJ
    Plant Methods; 2019; 15():97. PubMed ID: 31452673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing Early Transcriptomic Responses of 18 Soybean (
    Kohlhase DR; McCabe CE; Singh AK; O'Rourke JA; Graham MA
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches.
    Assefa T; Zhang J; Chowda-Reddy RV; Moran Lauter AN; Singh A; O'Rourke JA; Graham MA; Singh AK
    BMC Plant Biol; 2020 Jan; 20(1):42. PubMed ID: 31992198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of apoplastic iron in plant roots : a factor in the resistance of soybeans to iron-deficiency induced chlorosis?
    Longnecker N; Welch RM
    Plant Physiol; 1990 Jan; 92(1):17-22. PubMed ID: 16667242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic heterogeneity and structural variation in soybean near isogenic lines.
    Stec AO; Bhaskar PB; Bolon YT; Nolan R; Shoemaker RC; Vance CP; Stupar RM
    Front Plant Sci; 2013; 4():104. PubMed ID: 23630538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.).
    Santos CS; Roriz M; Carvalho SM; Vasconcelos MW
    Front Plant Sci; 2015; 6():325. PubMed ID: 26029227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning.
    Bai G; Jenkins S; Yuan W; Graef GL; Ge Y
    Front Plant Sci; 2018; 9():1002. PubMed ID: 30050552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency Chlorosis Tolerant Soybean.
    Moran Lauter AN; Rutter L; Cook D; O'Rourke JA; Graham MA
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering from iron deficiency chlorosis in near-isogenic soybeans: a microarray study.
    O'Rourke JA; Graham MA; Vodkin L; Gonzalez DO; Cianzio SR; Shoemaker RC
    Plant Physiol Biochem; 2007 May; 45(5):287-92. PubMed ID: 17466527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants.
    Roriz M; Carvalho SM; Vasconcelos MW
    Front Plant Sci; 2014; 5():726. PubMed ID: 25566297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis.
    Xu Z; Kurek A; Cannon SB; Beavis WD
    PLoS One; 2021; 16(7):e0240948. PubMed ID: 34242220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp)
    Santos CS; Rodrigues E; Ferreira S; Moniz T; Leite A; Carvalho SMP; Vasconcelos MW; Rangel M
    Physiol Plant; 2021 Sep; 173(1):235-245. PubMed ID: 33629743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves.
    Moran Lauter AN; Peiffer GA; Yin T; Whitham SA; Cook D; Shoemaker RC; Graham MA
    BMC Genomics; 2014 Aug; 15():702. PubMed ID: 25149281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max).
    Mamidi S; Lee RK; Goos JR; McClean PE
    PLoS One; 2014; 9(9):e107469. PubMed ID: 25225893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines.
    Wang J; McClean PE; Lee R; Goos RJ; Helms T
    Theor Appl Genet; 2008 Apr; 116(6):777-87. PubMed ID: 18292984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.