These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35313954)

  • 1. Phylogenomic analysis of the diversity of graspetides and proteins involved in their biosynthesis.
    Makarova KS; Blackburne B; Wolf YI; Nikolskaya A; Karamycheva S; Espinoza M; Barry CE; Bewley CA; Koonin EV
    Biol Direct; 2022 Mar; 17(1):7. PubMed ID: 35313954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics-Guided Expansion and Discovery of Graspetides.
    Ramesh S; Guo X; DiCaprio AJ; De Lio AM; Harris LA; Kille BL; Pogorelov TV; Mitchell DA
    ACS Chem Biol; 2021 Dec; 16(12):2787-2797. PubMed ID: 34766760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery, Function, and Engineering of Graspetides.
    Choi B; Link AJ
    Trends Chem; 2023 Aug; 5(8):620-633. PubMed ID: 37614740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Analysis of the Biosynthesis of the Aspartimidylated Graspetide Amycolimiditide.
    Choi B; Elashal HE; Cao L; Link AJ
    J Am Chem Soc; 2022 Nov; 144(47):21628-21639. PubMed ID: 36394830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Peptides from Graspetide Biosynthesis and Native Chemical Ligation.
    Choi B; Acuña A; Link AJ
    J Am Chem Soc; 2024 May; 146(17):11605-11609. PubMed ID: 38634647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product.
    Zhao G; Kosek D; Liu HB; Ohlemacher SI; Blackburne B; Nikolskaya A; Makarova KS; Sun J; Barry Iii CE; Koonin EV; Dyda F; Bewley CA
    J Am Chem Soc; 2021 Jun; 143(21):8056-8068. PubMed ID: 34028251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide.
    Elashal HE; Koos JD; Cheung-Lee WL; Choi B; Cao L; Richardson MA; White HL; Link AJ
    Nat Chem; 2022 Nov; 14(11):1325-1334. PubMed ID: 35982233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB.
    Song I; Kim Y; Yu J; Go SY; Lee HG; Song WJ; Kim S
    Nat Chem Biol; 2021 Nov; 17(11):1123-1131. PubMed ID: 34475564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides.
    Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification.
    Cao L; Do T; Zhu AD; Alam N; Link AJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine
    Arias-Orozco P; Zhou L; Yi Y; Cebrián R; Kuipers OP
    Microbiol Spectr; 2024 Jan; 12(1):e0361123. PubMed ID: 38088546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification.
    Cao L; Do T; Zhu A; Duan J; Alam N; Link AJ
    J Am Chem Soc; 2023 Aug; 145(34):18834-18845. PubMed ID: 37595015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Mining Reveals High Topological Diversity of ω-Ester-Containing Peptides and Divergent Evolution of ATP-Grasp Macrocyclases.
    Lee H; Choi M; Park JU; Roh H; Kim S
    J Am Chem Soc; 2020 Feb; 142(6):3013-3023. PubMed ID: 31961152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scalable platform to discover antimicrobials of ribosomal origin.
    Ayikpoe RS; Shi C; Battiste AJ; Eslami SM; Ramesh S; Simon MA; Bothwell IR; Lee H; Rice AJ; Ren H; Tian Q; Harris LA; Sarksian R; Zhu L; Frerk AM; Precord TW; van der Donk WA; Mitchell DA; Zhao H
    Nat Commun; 2022 Oct; 13(1):6135. PubMed ID: 36253467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria.
    Alam K; Islam MM; Gong K; Abbasi MN; Li R; Zhang Y; Li A
    Comput Biol Med; 2022 Jan; 140():105046. PubMed ID: 34864585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.