These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35314063)
1. Co-culture of Aspergillus sydowii and Bacillus subtilis induces the production of antibacterial metabolites. Sun Y; Shi X; Xing Y; Ren XX; Zhang DY; Li X; Xiu ZL; Dong YS Fungal Biol; 2022 Apr; 126(4):320-332. PubMed ID: 35314063 [TBL] [Abstract][Full Text] [Related]
2. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Sun Y; Liu WC; Shi X; Zheng HZ; Zheng ZH; Lu XH; Xing Y; Ji K; Liu M; Dong YS Microb Cell Fact; 2021 Feb; 20(1):42. PubMed ID: 33579268 [TBL] [Abstract][Full Text] [Related]
3. Biosynthetic Profile in the Co-culture of Aspergillus sydowii and Bacillus subtilis to Produce Novel Benzoic Derivatives. Sun Y; Shi X; He LY; Xing Y; Guo QF; Xiu ZL; Dong YS Microb Ecol; 2023 May; 85(4):1288-1299. PubMed ID: 35522265 [TBL] [Abstract][Full Text] [Related]
4. Induction of Secondary Metabolites from the Marine-Derived Fungus Aspergillus versicolor through Co-cultivation with Bacillus subtilis. Abdel-Wahab NM; Scharf S; Özkaya FC; Kurtán T; Mándi A; Fouad MA; Kamel MS; Müller WEG; Kalscheuer R; Lin W; Daletos G; Ebrahim W; Liu Z; Proksch P Planta Med; 2019 Apr; 85(6):503-512. PubMed ID: 30699456 [TBL] [Abstract][Full Text] [Related]
5. [Secondary metabolites of the co-culture of Aspergillus sp. SCSGAF 0076 and Bacillus sp. MNMCCE 001]. Dong J; Zhang X; Baol J; Xu X; Nong X; Qi S Wei Sheng Wu Xue Bao; 2014 Nov; 54(11):1289-95. PubMed ID: 25752135 [TBL] [Abstract][Full Text] [Related]
6. Genomics-Inspired Discovery of Three Antibacterial Active Metabolites, Aurantinins B, C, and D from Compost-Associated Bacillus subtilis fmb60. Yang J; Zhu X; Cao M; Wang C; Zhang C; Lu Z; Lu F J Agric Food Chem; 2016 Nov; 64(46):8811-8820. PubMed ID: 27806569 [TBL] [Abstract][Full Text] [Related]
7. Metabolomic Strategy to Characterize the Profile of Secondary Metabolites in Shi X; Sun Y; Liu J; Liu W; Xing Y; Xiu Z; Dong Y Molecules; 2022 Dec; 28(1):. PubMed ID: 36615412 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Li WT; Luo D; Huang JN; Wang LL; Zhang FG; Xi T; Liao JM; Lu YY Nat Prod Res; 2018 Mar; 32(6):662-667. PubMed ID: 28602098 [TBL] [Abstract][Full Text] [Related]
10. Metabolomic profiles of the liquid state fermentation in co-culture of Wang Y; Chen Y; Xin J; Chen X; Xu T; He J; Pan Z; Zhang C Front Microbiol; 2023; 14():1080743. PubMed ID: 36778878 [TBL] [Abstract][Full Text] [Related]
11. New macrolactins from a marine Bacillus sp. Sc026. Jaruchoktaweechai C; Suwanborirux K; Tanasupawatt S; Kittakoop P; Menasveta P J Nat Prod; 2000 Jul; 63(7):984-6. PubMed ID: 10924180 [TBL] [Abstract][Full Text] [Related]
13. Aspergillus flavus originated pure compound as a potential antibacterial. Khattak SU; Lutfullah G; Iqbal Z; Ahmad J; Rehman IU; Shi Y; Ikram S BMC Microbiol; 2021 Nov; 21(1):322. PubMed ID: 34798838 [TBL] [Abstract][Full Text] [Related]
14. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Maglangit F; Fang Q; Kyeremeh K; Sternberg JM; Ebel R; Deng H Molecules; 2020 Jan; 25(2):. PubMed ID: 31936318 [TBL] [Abstract][Full Text] [Related]
15. Macrolactin N, a new peptide deformylase inhibitor produced by Bacillus subtilis. Yoo JS; Zheng CJ; Lee S; Kwak JH; Kim WG Bioorg Med Chem Lett; 2006 Sep; 16(18):4889-92. PubMed ID: 16809037 [TBL] [Abstract][Full Text] [Related]
16. Upregulation and Identification of Antibiotic Activity of a Marine-Derived Streptomyces sp. via Co-Cultures with Human Pathogens. Sung AA; Gromek SM; Balunas MJ Mar Drugs; 2017 Aug; 15(8):. PubMed ID: 28800088 [TBL] [Abstract][Full Text] [Related]
17. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Ola AR; Thomy D; Lai D; Brötz-Oesterhelt H; Proksch P J Nat Prod; 2013 Nov; 76(11):2094-9. PubMed ID: 24175613 [TBL] [Abstract][Full Text] [Related]
18. Triggering of the antibacterial activity of Bacillus subtilis B38 strain against methicillin-resistant Staphylococcus aureus. Tabbene O; Karkouch I; Slimene IB; Elfeddy N; Cosette P; Mangoni ML; Jouenne T; Limam F Appl Biochem Biotechnol; 2011 May; 164(1):34-44. PubMed ID: 20972890 [TBL] [Abstract][Full Text] [Related]
19. Macrolactin S, a new antibacterial agent with FabG-inhibitory activity from Bacillus sp. AT28. Sohn MJ; Zheng CJ; Kim WG J Antibiot (Tokyo); 2008 Nov; 61(11):687-91. PubMed ID: 19168985 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Khochamit N; Siripornadulsil S; Sukon P; Siripornadulsil W Microbiol Res; 2015 Jan; 170():36-50. PubMed ID: 25440998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]