These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35314171)

  • 1. Gain-loss-duplication models for copy number evolution on a phylogeny: Exact algorithms for computing the likelihood and its gradient.
    Csűrös M
    Theor Popul Biol; 2022 Jun; 145():80-94. PubMed ID: 35314171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum likelihood models and algorithms for gene tree evolution with duplications and losses.
    Górecki P; Burleigh GJ; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S15. PubMed ID: 21342544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized birth and death process for modeling the fates of gene duplication.
    Zhao J; Teufel AI; Liberles DA; Liu L
    BMC Evol Biol; 2015 Dec; 15():275. PubMed ID: 26643106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary triplet models of structured RNA.
    Bradley RK; Holmes I
    PLoS Comput Biol; 2009 Aug; 5(8):e1000483. PubMed ID: 19714212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2019 Jul; 36(7):1384-1404. PubMed ID: 31004147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood.
    Csurös M
    Bioinformatics; 2010 Aug; 26(15):1910-2. PubMed ID: 20551134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and evolution of the filaggrin gene repeated region in primates.
    Romero V; Hosomichi K; Nakaoka H; Shibata H; Inoue I
    BMC Evol Biol; 2017 Jan; 17(1):10. PubMed ID: 28077068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.
    Shi T
    Mol Phylogenet Evol; 2016 Mar; 96():9-16. PubMed ID: 26702957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient exact algorithm for computing all pairwise distances between reconciliations in the duplication-transfer-loss model.
    Santichaivekin S; Mawhorter R; Libeskind-Hadas R
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):636. PubMed ID: 31842734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated pipeline for inferring the evolutionary history of a gene family embedded in the species tree: a case study on the STIMATE gene family.
    Song J; Zheng S; Nguyen N; Wang Y; Zhou Y; Lin K
    BMC Bioinformatics; 2017 Oct; 18(1):439. PubMed ID: 28974198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome halving and double distance with losses.
    Savard OT; Gagnon Y; Bertrand D; El-Mabrouk N
    J Comput Biol; 2011 Sep; 18(9):1185-99. PubMed ID: 21899424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the evolutionary history of gene families.
    Ames RM; Money D; Ghatge VP; Whelan S; Lovell SC
    Bioinformatics; 2012 Jan; 28(1):48-55. PubMed ID: 22039210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome distance and phylogenetic inference accommodating gene duplication, loss and new gene input.
    Gu X
    Mol Phylogenet Evol; 2023 Dec; 189():107916. PubMed ID: 37742882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear-time algorithms for the multiple gene duplication problems.
    Luo CW; Chen MC; Chen YC; Yang RW; Liu HF; Chao KM
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):260-5. PubMed ID: 21071814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework.
    Doyon JP; Hamel S; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):26-39. PubMed ID: 21464510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model.
    Csurös M; Miklós I
    Mol Biol Evol; 2009 Sep; 26(9):2087-95. PubMed ID: 19570746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prescient evolutionary model for genesis, duplication and differentiation of MIR160 homologs in Brassicaceae.
    Singh S; Singh A
    Mol Genet Genomics; 2021 Jul; 296(4):985-1003. PubMed ID: 34052911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying vertical and nonvertical evolution: a stochastic ARG-based framework.
    Bloomquist EW; Suchard MA
    Syst Biol; 2010 Jan; 59(1):27-41. PubMed ID: 20525618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.