These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35314324)

  • 1. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates.
    Cámara E; Olsson L; Zrimec J; Zelezniak A; Geijer C; Nygård Y
    Biotechnol Adv; 2022; 57():107947. PubMed ID: 35314324
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Cámara E; Mormino M; Siewers V; Nygård Y
    Appl Environ Microbiol; 2024 May; 90(5):e0233023. PubMed ID: 38587374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
    Almario MP; Reyes LH; Kao KC
    Biotechnol Bioeng; 2013 Oct; 110(10):2616-23. PubMed ID: 23613173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.
    Zhang MM; Chen HQ; Ye PL; Wattanachaisaereekul S; Bai FW; Zhao XQ
    Prog Mol Subcell Biol; 2019; 58():61-83. PubMed ID: 30911889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.
    Bottoms S; Dickinson Q; McGee M; Hinchman L; Higbee A; Hebert A; Serate J; Xie D; Zhang Y; Coon JJ; Myers CL; Landick R; Piotrowski JS
    Microb Cell Fact; 2018 Jan; 17(1):5. PubMed ID: 29329531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pichia anomala 29X: a resistant strain for lignocellulosic biomass hydrolysate fermentation.
    Zha Y; Hossain AH; Tobola F; Sedee N; Havekes M; Punt PJ
    FEMS Yeast Res; 2013 Nov; 13(7):609-17. PubMed ID: 23826802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals.
    Fernández-Sandoval MT; García A; Teymennet-Ramírez KV; Arenas-Olivares DY; Martínez-Morales F; Trejo-Hernández MR
    Biotechnol Prog; 2024; 40(1):e3406. PubMed ID: 37964692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts.
    Zha Y; Slomp R; van Groenestijn J; Punt PJ
    Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates.
    Cheng C; Almario MP; Kao KC
    Biotechnol Lett; 2015 Nov; 37(11):2193-200. PubMed ID: 26112326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol.
    Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.