These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35314384)

  • 1. Multidirectional basketball activities load different regions of the tibia: A subject-specific muscle-driven finite element study.
    Yan C; Bice RJ; Frame JW; Warden SJ; Kersh ME
    Bone; 2022 Jun; 159():116392. PubMed ID: 35314384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of load carriage and physical activity history on tibia bone strain.
    Wang H; Kia M; Dickin DC
    J Sport Health Sci; 2019 Sep; 8(5):478-485. PubMed ID: 31534823
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Milgrom C; Voloshin A; Novack L; Milgrom Y; Ekenman I; Finestone AS
    Bone Rep; 2022 Jun; 16():101170. PubMed ID: 35198657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femoral shaft strains during daily activities: Implications for atypical femoral fractures.
    Martelli S; Pivonka P; Ebeling PR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):869-76. PubMed ID: 25156184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationships between multiaxial loading history and tibial strains during load carriage.
    Hughes JM; Dickin DC; Wang H
    J Sci Med Sport; 2019 Jan; 22(1):48-53. PubMed ID: 29884594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.
    Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do high impact exercises produce higher tibial strains than running?
    Milgrom C; Finestone A; Levi Y; Simkin A; Ekenman I; Mendelson S; Millgram M; Nyska M; Benjuya N; Burr D
    Br J Sports Med; 2000 Jun; 34(3):195-9. PubMed ID: 10854019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Model for Stress Fracture-related Factors in Athletes and Soldiers.
    Hadid A; Epstein Y; Shabshin N; Gefen A
    Med Sci Sports Exerc; 2018 Sep; 50(9):1827-1836. PubMed ID: 29614000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces.
    Milgrom C; Finestone AS; Voloshin A
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105146. PubMed ID: 32829236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial Strains During Prolonged Downhill Running: A Finite Element Analysis.
    Khassetarash A; Haider I; Baggaley M; Edwards WB
    J Biomech Eng; 2023 Apr; 145(4):. PubMed ID: 36149009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain Distribution Evaluation of Rat Tibia under Axial Compressive Load by Combining Strain Gauge Measurement and Finite Element Analysis.
    Gao J; Liu B; Zhang M; Gong H; Gao B
    Appl Bionics Biomech; 2019; 2019():1736763. PubMed ID: 31871486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of strain in the macaque tibia during functional activity.
    Demes B; Qin YX; Stern JT; Larson SG; Rubin CT
    Am J Phys Anthropol; 2001 Dec; 116(4):257-65. PubMed ID: 11745077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and finite element analysis of tibial stress fractures using a rabbit model.
    Franklyn M; Field B
    World J Orthop; 2013; 4(4):267-78. PubMed ID: 24147262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.
    Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM
    PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibial-fibular geometry and density variations associated with elevated bone strain and sex disparities in young active adults.
    Bruce OL; Baggaley M; Khassetarash A; Haider IT; Edwards WB
    Bone; 2022 Aug; 161():116443. PubMed ID: 35589067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion.
    Derrick TR; Edwards WB; Fellin RE; Seay JF
    J Biomech; 2016 Feb; 49(3):429-35. PubMed ID: 26803338
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.