These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35314731)

  • 1. Four-limb wireless IMU sensor system for automatic gait detection in canines.
    Zhang X; Jenkins GJ; Hakim CH; Duan D; Yao G
    Sci Rep; 2022 Mar; 12(1):4788. PubMed ID: 35314731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic characterization of stride parameters in canines with a single wearable inertial sensor.
    Jenkins GJ; Hakim CH; Yang NN; Yao G; Duan D
    PLoS One; 2018; 13(6):e0198893. PubMed ID: 29902280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot.
    Bragança FM; Bosch S; Voskamp JP; Marin-Perianu M; Van der Zwaag BJ; Vernooij JCM; van Weeren PR; Back W
    Equine Vet J; 2017 Jul; 49(4):545-551. PubMed ID: 27862238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors.
    Olsen E; Andersen PH; Pfau T
    Sensors (Basel); 2012; 12(6):8145-56. PubMed ID: 22969392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs.
    Duerr FM; Pauls A; Kawcak C; Haussler K; Bertocci G; Moorman V; King M
    Vet Comp Orthop Traumatol; 2016 Nov; 29(6):475-483. PubMed ID: 27761576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial sensor-based system for lameness detection in trotting dogs with induced lameness.
    Rhodin M; Bergh A; Gustås P; Gómez Álvarez CB
    Vet J; 2017 Apr; 222():54-59. PubMed ID: 28283369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations.
    Zhou L; Tunca C; Fischer E; Brahms CM; Ersoy C; Granacher U; Arnrich B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4229-4232. PubMed ID: 33018930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulated Changes in Limb Mass and Rotational Inertia in Trotting Dogs (Canis lupus familiaris) and Their Effect on Limb Kinematics.
    Kilbourne BM; Carrier DR
    J Exp Zool A Ecol Genet Physiol; 2016 Dec; 325(10):665-674. PubMed ID: 28145055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal-spatial gait analysis by use of a portable walkway system in healthy Labrador Retrievers at a walk.
    Light VA; Steiss JE; Montgomery RD; Rumph PF; Wright JC
    Am J Vet Res; 2010 Sep; 71(9):997-1002. PubMed ID: 20807137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses.
    Keegan KG; Kramer J; Yonezawa Y; Maki H; Pai PF; Dent EV; Kellerman TE; Wilson DA; Reed SK
    Am J Vet Res; 2011 Sep; 72(9):1156-63. PubMed ID: 21879972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Protocol for Biomechanical Gait Analysis in Asian Elephants Using the Triaxial Inertial Measurement Unit (IMU).
    Wantanajittikul K; Thitaram C; Khammesri S; Kongsawasdi S
    Vet Sci; 2022 Aug; 9(8):. PubMed ID: 36006347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporo-spatial and kinetic gait parameters in English setter dogs.
    Gündemir O; Duro S; Aydın Kaya D; Zenginler Yazgan Y
    Anat Histol Embryol; 2020 Nov; 49(6):763-769. PubMed ID: 32462778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground reaction force adaptations to tripedal locomotion in dogs.
    Fuchs A; Goldner B; Nolte I; Schilling N
    Vet J; 2014 Sep; 201(3):307-15. PubMed ID: 24881509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic hoof-on and -off detection in horses using hoof-mounted inertial measurement unit sensors.
    Tijssen M; Hernlund E; Rhodin M; Bosch S; Voskamp JP; Nielen M; Serra Braganςa FM
    PLoS One; 2020; 15(6):e0233266. PubMed ID: 32492034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units.
    Allseits E; Lučarević J; Gailey R; Agrawal V; Gaunaurd I; Bennett C
    J Biomech; 2017 Apr; 55():27-33. PubMed ID: 28302315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.