These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35314998)

  • 1. Freeze-Dried Biopharmaceutical Formulations are Surprisingly Less Stable than Liquid Formulations during Dropping.
    Fang WJ; Pang MJ; Liu JW; Wang X; Wang H; Sun MF
    Pharm Res; 2022 Apr; 39(4):795-803. PubMed ID: 35314998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Secondary Package on Freeze-Dried Biopharmaceutical Formulation Stability During Dropping.
    Fang WJ; Liu JW; Barnard J; Wang H; Qian YC; Xu J
    J Pharm Sci; 2021 Aug; 110(8):2916-2924. PubMed ID: 33940028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Sub-Visible Particle and Free Radical formation of a Freeze-Dried Monoclonal Antibody Formulation During Dropping.
    Fang WJ; Liu JW; Zheng HJ; Shen BB; Wang X; Kong Y; Jing ZY; Gao JQ
    J Pharm Sci; 2021 Apr; 110(4):1625-1634. PubMed ID: 33049261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary Packages cannot Protect Liquid Biopharmaceutical Formulations from Dropping-Induced Degradation.
    Fang WJ; Liu JW; Gao H; Qian YC; Gao JQ; Wang H
    Pharm Res; 2021 Aug; 38(8):1397-1404. PubMed ID: 34282500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-Dried Monoclonal Antibody Formulations are Unexpectedly More Prone to Degradation Than Liquid Formulations Under Shaking Stress.
    Fang WJ; Ingle RG; Liu JW; Ge XZ; Wang H
    J Pharm Sci; 2022 Jul; 111(7):2134-2138. PubMed ID: 35257695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking.
    Jin MJ; Ge XZ; Huang Q; Liu JW; Ingle RG; Gao D; Fang WJ
    Pharm Res; 2024 Feb; 41(2):321-334. PubMed ID: 38291165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of protein sub-visible particles during powder grinding of a monoclonal antibody.
    Qian C; Wang G; Wang X; Barnard J; Gao JQ; Bao W; Wang H; Li F; Ingle RG; Fang WJ
    Eur J Pharm Biopharm; 2020 Apr; 149():1-11. PubMed ID: 32006605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation.
    Jing ZY; Huo GL; Sun MF; Shen BB; Fang WJ
    Pharm Res; 2022 Feb; 39(2):399-410. PubMed ID: 35083639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of protein sub-visible particles during vacuum degassing of etanercept solutions.
    Wang H; Zheng HJ; Wang Z; Bai H; Carpenter JF; Chen S; Fang WJ
    Int J Biol Macromol; 2014 May; 66():151-7. PubMed ID: 24513220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.
    Garidel P; Pevestorf B; Bahrenburg S
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying.
    Hufnagel S; Xu H; Sahakijpijarn S; Moon C; Chow LQM; Williams Iii RO; Cui Z
    Int J Pharm; 2022 Apr; 618():121637. PubMed ID: 35259440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability (I): stability of a monoclonal antibody.
    Abdul-Fattah AM; Truong-Le V; Yee L; Nguyen L; Kalonia DS; Cicerone MT; Pikal MJ
    J Pharm Sci; 2007 Aug; 96(8):1983-2008. PubMed ID: 17286290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between Dynamic Light Scattering and Size Exclusion High Performance Liquid Chromatography for Monitoring the Effect of pH on Stability of Biopharmaceuticals.
    Al-Ghobashy MA; Mostafa MM; Abed HS; Fathalla FA; Salem MY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Aug; 1060():1-9. PubMed ID: 28578190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing freeze drying and spray drying of interleukins using model protein CXCL8 and its variants.
    Fiedler D; Hartl S; Gerlza T; Trojacher C; Kungl A; Khinast J; Roblegg E
    Eur J Pharm Biopharm; 2021 Nov; 168():152-165. PubMed ID: 34474111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability Comparison Between Microglassification and Lyophilization Using a Monoclonal Antibody.
    Chandrababu KB; Kannan A; Savage JR; Stadmiller S; Ryle AE; Cheung C; Kelley RF; Maa YF; Saggu M; Bitterfield DL
    J Pharm Sci; 2024 Apr; 113(4):1054-1060. PubMed ID: 37863428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state.
    Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ
    J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.