These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35315219)

  • 1. Multifunction-Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo.
    Anjong TF; Choi H; Yoo J; Bak Y; Cho Y; Kim D; Lee S; Lee K; Kim BG; Kim S
    Small; 2022 Jun; 18(22):e2200245. PubMed ID: 35315219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging.
    Liu Y; Teng L; Lou XF; Zhang XB; Song G
    J Am Chem Soc; 2023 Mar; 145(9):5134-5144. PubMed ID: 36823697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging.
    Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Zhao M; Miao J; Chen W; Zhang Y; Miao M; Yang L; Li Q; Miao Q
    Nat Commun; 2024 Mar; 15(1):2124. PubMed ID: 38459025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging.
    Zhu J; Chen W; Yang L; Zhang Y; Cheng B; Gu W; Li Q; Miao Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318545. PubMed ID: 38247345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging.
    Liu Y; Teng L; Lyu Y; Song G; Zhang XB; Tan W
    Nat Commun; 2022 Apr; 13(1):2216. PubMed ID: 35468901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide Anion-Mediated Afterglow Mechanism-Based Water-Soluble Zwitterion Dye Achieving Renal-Failure Mice Detection.
    Li Z; Xu L; Li JY; Lei L; Liang PZ; Wu Q; Yang F; Ren TB; Yin X; Yuan L; Zhang XB
    J Am Chem Soc; 2023 Dec; 145(49):26736-26746. PubMed ID: 38015824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Organic Afterglow Protheranostic Nanoassembly.
    He S; Xie C; Jiang Y; Pu K
    Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes.
    Wei X; Xu C; Cheng P; Hu Y; Liu J; Xu M; Huang J; Zhang Y; Pu K
    J Am Chem Soc; 2024 Jun; 146(25):17393-17403. PubMed ID: 38860693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics.
    Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K
    Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging.
    Zhen X; Tao Y; An Z; Chen P; Xu C; Chen R; Huang W; Pu K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28657119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Renal-Clearable Duplex Optical Reporter for Real-Time Imaging of Contrast-Induced Acute Kidney Injury.
    Huang J; Lyu Y; Li J; Cheng P; Jiang Y; Pu K
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17796-17804. PubMed ID: 31602731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise Monitoring of Drug-Induced Kidney Injury Using an Endoplasmic Reticulum-Targetable Ratiometric Time-Gated Luminescence Probe for Superoxide Anions.
    Tang Z; Song B; Zhang W; Guo L; Yuan J
    Anal Chem; 2019 Nov; 91(21):14019-14028. PubMed ID: 31578849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coloring Afterglow Nanoparticles for High-Contrast Time-Gating-Free Multiplex Luminescence Imaging.
    Li Z; Yu N; Zhou J; Li Y; Zhang Y; Huang L; Huang K; Zhao Y; Kelmar S; Yang J; Han G
    Adv Mater; 2020 Dec; 32(49):e2003881. PubMed ID: 33145880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor.
    Zheng X; Tang H; Xie C; Zhang J; Wu W; Jiang X
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8094-9. PubMed ID: 26037656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activatable Dual-Optical Molecular Probe for Bioimaging Superoxide Anion in Epilepsy.
    Si M; Lv L; Shi Y; Li Z; Zhai W; Luo X; Zhang L; Qian Y
    Anal Chem; 2024 Mar; 96(11):4632-4638. PubMed ID: 38457631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.