BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35315482)

  • 1. Mulberrin inhibits
    Liu L; Wang H; Lin L; Gao Y; Niu X
    Food Funct; 2022 Apr; 13(7):4032-4046. PubMed ID: 35315482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activity and molecular mechanisms of mulberrin derivatives against Colletotrichum gloeosporioides for mango storage.
    Niu X; Lin L; Liu L; Yu Y; Wang H
    Int J Food Microbiol; 2022 Oct; 378():109817. PubMed ID: 35759883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Synthesis, Bioactive Evaluation, and Molecular Dynamics Simulation of Novel 4
    Bao A; Jiang W; Xie X; Wang D; Deng Z; Wang J; Li W; Tang X; Yan Y
    J Med Chem; 2024 May; 67(10):7954-7972. PubMed ID: 38703119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Pyrido[4,3-
    Yan Y; Xie X; Jiang W; Bao A; Deng Z; Wang D; Wang J; Li W; Tang X
    J Agric Food Chem; 2024 May; 72(21):12260-12269. PubMed ID: 38759097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea.
    Ni J; Yu L; Li F; Li Y; Zhang M; Deng Y; Liu X
    World J Microbiol Biotechnol; 2023 Mar; 39(5):117. PubMed ID: 36918502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Antifungal Activity of
    Righini H; Baraldi E; García Fernández Y; Martel Quintana A; Roberti R
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31137530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches.
    Raorane CJ; Raj V; Lee JH; Lee J
    Int J Food Microbiol; 2022 Feb; 362():109492. PubMed ID: 34861563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α-demethylase (CYP51).
    Warrilow AG; Hull CM; Rolley NJ; Parker JE; Nes WD; Smith SN; Kelly DE; Kelly SL
    Appl Environ Microbiol; 2014 Oct; 80(19):6154-66. PubMed ID: 25085484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity.
    Hargrove TY; Wawrzak Z; Alexander PW; Chaplin JH; Keenan M; Charman SA; Perez CJ; Waterman MR; Chatelain E; Lepesheva GI
    J Biol Chem; 2013 Nov; 288(44):31602-15. PubMed ID: 24047900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent.
    Singh A; Paliwal SK; Sharma M; Mittal A; Sharma S; Sharma JP
    J Mol Graph Model; 2016 Jan; 63():1-7. PubMed ID: 26579619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of the CYP51 gene of the obligate fungus Blumeria graminis in the necrotrophic fungus Botrytis cinerea.
    Yan LY; Chen YF; Yang QQ; Ma ZH
    J Eukaryot Microbiol; 2012; 59(1):88-92. PubMed ID: 21895843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Point Mutations on CYP51 Combined With Induced Expression of the Target Gene Appeared to Mediate Pyrisoxazole Resistance in
    Zhang C; Imran M; Liu M; Li Z; Gao H; Duan H; Zhou S; Liu X
    Front Microbiol; 2020; 11():1396. PubMed ID: 32714305
    [No Abstract]   [Full Text] [Related]  

  • 14. Dibenzylideneacetone Overcomes
    Niu X; Wang Z; Wang C; Wang H
    J Agric Food Chem; 2023 Dec; 71(49):19422-19433. PubMed ID: 37915214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections.
    Zhu T; Chen X; Li C; Tu J; Liu N; Xu D; Sheng C
    Eur J Med Chem; 2021 Oct; 221():113524. PubMed ID: 33992927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and activity evaluation of novel benzodioxane derivatives as dual-target antifungal inhibitors.
    An Y; Liu W; Xie H; Fan H; Han J; Sun B
    Eur J Med Chem; 2022 Jan; 227():113950. PubMed ID: 34731761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semisynthesis and antifungal activity of novel oxime ester derivatives of carabrone modified at C(4) against Botrytis cinerea.
    Wang D; Ren S; Wang H; Yan H; Feng J; Zhang X
    Chem Biodivers; 2014 Jun; 11(6):886-903. PubMed ID: 24934674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol.
    Hargrove TY; Wawrzak Z; Liu J; Waterman MR; Nes WD; Lepesheva GI
    J Lipid Res; 2012 Feb; 53(2):311-20. PubMed ID: 22135275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.