These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35315663)

  • 1. Perspectives for Future Use of Cardiac Microtissues from Human Pluripotent Stem Cells.
    Arslan U; Orlova VV; Mummery CL
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4605-4609. PubMed ID: 35315663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity.
    Liu S; Fang C; Zhong C; Li J; Xiao Q
    Cell Biol Toxicol; 2023 Dec; 39(6):2527-2549. PubMed ID: 37889357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and Engineered Organoids for Cardiovascular Models.
    Thomas D; Choi S; Alamana C; Parker KK; Wu JC
    Circ Res; 2022 Jun; 130(12):1780-1802. PubMed ID: 35679369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart in a dish - choosing the right in vitro model.
    Drakhlis L; Zweigerdt R
    Dis Model Mech; 2023 May; 16(5):. PubMed ID: 36825553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells.
    Ng WH; Johnston EK; Tan JJ; Bliley JM; Feinberg AW; Stolz DB; Sun M; Wijesekara P; Hawkins F; Kotton DN; Ren X
    Elife; 2022 Jan; 11():. PubMed ID: 35018887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturing differentiated human pluripotent stem cells in vitro: methods and challenges.
    Ottaviani D; Ter Huurne M; Elliott DA; Bellin M; Mummery CL
    Development; 2023 Jun; 150(11):. PubMed ID: 37260361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.
    Yang X; Pabon L; Murry CE
    Circ Res; 2014 Jan; 114(3):511-23. PubMed ID: 24481842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells.
    Moon SH; Ban K; Kim C; Kim SS; Byun J; Song MK; Park IH; Yu SP; Yoon YS
    Int J Cardiol; 2013 Sep; 168(1):41-52. PubMed ID: 23044428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and opportunities for the next generation of cardiovascular tissue engineering.
    Cho S; Discher DE; Leong KW; Vunjak-Novakovic G; Wu JC
    Nat Methods; 2022 Sep; 19(9):1064-1071. PubMed ID: 36064773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques.
    Matsumoto R; Yamamoto T; Takahashi Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip.
    Schneider O; Zeifang L; Fuchs S; Sailer C; Loskill P
    Tissue Eng Part A; 2019 May; 25(9-10):786-798. PubMed ID: 30968738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered models of the human heart: Directions and challenges.
    Stein JM; Mummery CL; Bellin M
    Stem Cell Reports; 2021 Sep; 16(9):2049-2057. PubMed ID: 33338434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease.
    Biswas PK; Park J
    Mol Cells; 2024 Jul; 47(7):100077. PubMed ID: 38825189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells.
    Giacomelli E; Bellin M; Sala L; van Meer BJ; Tertoolen LG; Orlova VV; Mummery CL
    Development; 2017 Mar; 144(6):1008-1017. PubMed ID: 28279973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
    Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L
    Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications.
    Protze SI; Lee JH; Keller GM
    Cell Stem Cell; 2019 Sep; 25(3):311-327. PubMed ID: 31491395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform.
    Achberger K; Probst C; Haderspeck J; Bolz S; Rogal J; Chuchuy J; Nikolova M; Cora V; Antkowiak L; Haq W; Shen N; Schenke-Layland K; Ueffing M; Liebau S; Loskill P
    Elife; 2019 Aug; 8():. PubMed ID: 31451149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart regeneration with human pluripotent stem cells: Prospects and challenges.
    Jiang Y; Lian XL
    Bioact Mater; 2020 Mar; 5(1):74-81. PubMed ID: 31989061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue.
    Ruan JL; Tulloch NL; Razumova MV; Saiget M; Muskheli V; Pabon L; Reinecke H; Regnier M; Murry CE
    Circulation; 2016 Nov; 134(20):1557-1567. PubMed ID: 27737958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.