These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35315942)

  • 21. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.
    Macedo ML; Freire Md; Kubo CE; Parra JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jan; 153(1):24-33. PubMed ID: 20692365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of in vitro and in vivo effects of semipurified proteinase inhibitors from Theobroma seeds on midgut protease activity of Lepidopteran pest insects.
    Paulillo LC; Sebbenn AM; de Carvalho Derbyshire MT; Góes-Neto A; de Paula Brotto MA; Figueira A
    Arch Insect Biochem Physiol; 2012 Sep; 81(1):34-52. PubMed ID: 22806759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating Efficacy of Ingested Positively Charged Zein Nanoparticles Against Noctuidae.
    Bonser CAR; Chen X; Astete CE; Sabliov CM; Davis JA
    J Econ Entomol; 2020 Dec; 113(6):2739-2744. PubMed ID: 32940682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical responses of Anticarsia gemmatalis (Lepidoptera: Noctuidae) in soybean cultivars sprayed with the protease inhibitor berenil.
    Paixão GP; Lourenção AL; Silva CR; Mendonça EG; Silva PL; Oliveira JA; Zanuncio JC; Oliveira MG
    J Agric Food Chem; 2013 Aug; 61(34):8034-8. PubMed ID: 23909602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.
    Dillon FM; Tejedor MD; Ilina N; Chludil HD; Mithöfer A; Pagano EA; Zavala JA
    Plant Cell Environ; 2018 Feb; 41(2):383-394. PubMed ID: 29194661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical characterization of digestive membrane-associated alkaline phosphatase from the velvet bean caterpillar Anticarsia gemmatalis.
    da Silva G; Costa Ramos LF; Dos Santos Seckler H; Mendonça Gomes F; Reis Cortines J; Ramos I; Dinis Anobom C; de Alcantara Machado E; Perpétua de Oliveira DM
    Arch Insect Biochem Physiol; 2019 Sep; 102(1):e21591. PubMed ID: 31257641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families.
    Bown DP; Wilkinson HS; Gatehouse JA
    Insect Biochem Mol Biol; 1997 Jul; 27(7):625-38. PubMed ID: 9404008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological characteristics of Anticarsia gemmatalis (Lepidoptera: Noctuidae) for three consecutive generations under different temperatures: understanding the possible impact of global warming on a soybean pest.
    da Silva DM; Hoffmann-Campo CB; de Freitas Bueno A; de Freitas Bueno RC; de Oliveira MC; Moscardi F
    Bull Entomol Res; 2012 Jun; 102(3):285-92. PubMed ID: 22112586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of Bacillus thuringiensis Cry1Ie2, Cry2Ac7, Vip3Aa11 and Cry7Ab3 proteins against Anticarsia gemmatalis, Chrysodeixis includens and Ceratoma trifurcata.
    Mushtaq R; Behle R; Liu R; Niu L; Song P; Shakoori AR; Jurat-Fuentes JL
    J Invertebr Pathol; 2017 Nov; 150():70-72. PubMed ID: 28919015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis.
    Oliveira MG; De Simone SG; Xavier LP; Guedes RN
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):369-80. PubMed ID: 15694584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera.
    Saikhedkar NS; Joshi RS; Bhoite AS; Mohandasan R; Yadav AK; Fernandes M; Kulkarni KA; Giri AP
    Insect Biochem Mol Biol; 2018 Apr; 95():17-25. PubMed ID: 29486250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yolk hydrolases in the eggs of Anticarsia gemmatalis hubner (Lepidoptera: Noctuidae): a role for inorganic polyphosphate towards yolk mobilization.
    Oliveira DM; Gomes FM; Carvalho DB; Ramos I; Carneiro AB; Silva-Neto MA; de Souza W; Lima AP; Miranda K; Machado EA
    J Insect Physiol; 2013 Dec; 59(12):1242-9. PubMed ID: 24140472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence.
    Yang L; Fang Z; Dicke M; van Loon JJ; Jongsma MA
    Insect Biochem Mol Biol; 2009 Jan; 39(1):55-61. PubMed ID: 18992817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays.
    Chougule NP; Doyle E; Fitches E; Gatehouse JA
    J Insect Physiol; 2008 Mar; 54(3):563-72. PubMed ID: 18241882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The trypsin inhibitor pro-peptide induces toxic effects in Indianmeal moth, Plodia interpunctella.
    Hemmati SA; Takalloo Z; Taghdir M; Mehrabadi M; Balalaei S; Moharramipour S; H Sajedi R
    Pestic Biochem Physiol; 2021 Jan; 171():104730. PubMed ID: 33357552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Anticarsia gemmatalis multiple nucleopolyhedrovirus mutant, vApAg, induces hemocytes apoptosis in vivo and displays reduced infectivity in larvae of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae).
    da Silveira EB; Cordeiro BA; Ribeiro BM; de Castro ME; Soares EF; Báo SN
    Virus Res; 2007 Dec; 130(1-2):182-92. PubMed ID: 17643541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis).
    Franco OL; Dias SC; Magalhães CP; Monteiro AC; Bloch C; Melo FR; Oliveira-Neto OB; Monnerat RG; Grossi-de-Sá MF
    Phytochemistry; 2004 Jan; 65(1):81-9. PubMed ID: 14697273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions among insect-resistant soybean genotypes extracts with populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) susceptible and resistant to its nucleopolyhedrovirus.
    Piubelli GC; Moscardi F; Hoffmann-Campo CB
    An Acad Bras Cienc; 2009 Dec; 81(4):861-71. PubMed ID: 19893908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance of Soybean Genotypes to Anticarsia gemmatalis (Lepidoptera: Erebidae): Antixenosis and Antibiosis Characterization.
    Ongaratto S; Silveira CM; Santos MC; Gorri JER; Sartori MMP; Hunt TE; Lourenção AL; Baldin ELL
    J Econ Entomol; 2021 Dec; 114(6):2571-2580. PubMed ID: 34718639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testes morphology and the identification of transcripts of the hormonal pathways of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae).
    Pezenti LF; Levy SM; de Souza RF; Sosa-Gómez DR; da Rosa R
    Arthropod Struct Dev; 2021 Nov; 65():101111. PubMed ID: 34571334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.