These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35316192)

  • 1. Data-Driven Real-Time Magnetic Tracking Applied to Myokinetic Interfaces.
    Mendez SP; Gherardini M; Santos GVP; Munoz DM; Ayala HVH; Cipriani C
    IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):266-274. PubMed ID: 35316192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Spatial Sensor Design for Magnetic Tracking in a Myokinetic Control Interface.
    Gherardini M; Mannini A; Cipriani C
    Comput Methods Programs Biomed; 2021 Nov; 211():106407. PubMed ID: 34537492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Myokinetic Control Interface: How Many Magnets Can be Implanted in an Amputated Forearm? Evidence From a Simulated Environment.
    Milici S; Gherardini M; Clemente F; Masiero F; Sassu P; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2451-2458. PubMed ID: 32956064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The myokinetic control interface: tracking implanted magnets as a means for prosthetic control.
    Tarantino S; Clemente F; Barone D; Controzzi M; Cipriani C
    Sci Rep; 2017 Dec; 7(1):17149. PubMed ID: 29215082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of Tracking Multiple Implanted Magnets With a Myokinetic Control Interface: Simulation and Experimental Evidence Based on the Point Dipole Model.
    Tarantino S; Clemente F; De Simone A; Cipriani C
    IEEE Trans Biomed Eng; 2020 May; 67(5):1282-1292. PubMed ID: 31425017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To What Extent Implanting Single vs Pairs of Magnets Per Muscle Affect the Localization Accuracy of the Myokinetic Control Interface? Evidence From a Simulated Environment.
    Paggetti F; Gherardini M; Lucantonio A; Cipriani C
    IEEE Trans Biomed Eng; 2023 Oct; 70(10):2972-2979. PubMed ID: 37141061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and
    Iacovacci V; Naselli I; Salgarella AR; Clemente F; Ricotti L; Cipriani C
    RSC Adv; 2021 Feb; 11(12):6766-6775. PubMed ID: 35423178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Embedded Myokinetic Prosthetic Hand Controller.
    Clemente F; Ianniciello V; Gherardini M; Cipriani C
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization accuracy of multiple magnets in a myokinetic control interface.
    Gherardini M; Clemente F; Milici S; Cipriani C
    Sci Rep; 2021 Mar; 11(1):4850. PubMed ID: 33649463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of generating 90 Hz vibrations in remote implanted magnets.
    Montero J; Clemente F; Cipriani C
    Sci Rep; 2021 Jul; 11(1):15456. PubMed ID: 34326398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myokinetic stimulation interface: activation of proprioceptive neural responses with remotely actuated magnets implanted in rodent forelimb muscle.
    Montero J; Thumser ZC; Masiero F; Beckler DT; Clemente F; Marasco PD; Cipriani C
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35390778
    [No Abstract]   [Full Text] [Related]  

  • 12. Passive magnetic-based localization for precise untethered medical instrument tracking.
    Sun Z; Maréchal L; Foong S
    Comput Methods Programs Biomed; 2018 Mar; 156():151-161. PubMed ID: 29428067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating the discovery of novel magnetic materials using machine learning-guided adaptive feedback.
    Xia W; Sakurai M; Balasubramanian B; Liao T; Wang R; Zhang C; Sun H; Ho KM; Chelikowsky JR; Sellmyer DJ; Wang CZ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2204485119. PubMed ID: 36375053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time localization system for an endoscopic capsule using magnetic sensors.
    Pham DM; Aziz SM
    Sensors (Basel); 2014 Nov; 14(11):20910-29. PubMed ID: 25379813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors.
    Junaid M; Arslan S; Lee T; Kim H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of Artificial Neural Networks for Solving Inverse Problems in Magnetic Field-Based Localization.
    Sasaki AI
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-precision weights network for field-programmable gate array.
    Fuengfusin N; Tamukoh H
    PLoS One; 2021; 16(5):e0251329. PubMed ID: 33970965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new evaluation and prediction model of sound quality of high-speed permanent magnet motor based on genetic algorithm-radial basis function artificial neural network.
    Hu K; Zhang G; Zhang W
    Sci Prog; 2021; 104(3):368504211031114. PubMed ID: 34261389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact rotary magnetic tweezers device for dynamic material analysis.
    Berezney JP; Valentine MT
    Rev Sci Instrum; 2022 Sep; 93(9):093701. PubMed ID: 36182480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hysteresis Modeling in Iron-Dominated Magnets Based on a Multi-Layered NARX Neural Network Approach.
    Amodeo M; Arpaia P; Buzio M; Di Capua V; Donnarumma F
    Int J Neural Syst; 2021 Sep; 31(9):2150033. PubMed ID: 34296651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.