These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35316351)

  • 1. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs.
    Li Y; Kaur S; Pembleton LW; Valipour-Kahrood H; Rosewarne GM; Daetwyler HD
    Theor Appl Genet; 2022 Jun; 135(6):1813-1828. PubMed ID: 35316351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.
    Lin Z; Cogan NO; Pembleton LW; Spangenberg GC; Forster JW; Hayes BJ; Daetwyler HD
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gains through selection for grain yield in a winter wheat breeding program.
    Lozada DN; Ward BP; Carter AH
    PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection.
    Gorjanc G; Gaynor RC; Hickey JM
    Theor Appl Genet; 2018 Sep; 131(9):1953-1966. PubMed ID: 29876589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass.
    Pembleton LW; Inch C; Baillie RC; Drayton MC; Thakur P; Ogaji YO; Spangenberg GC; Forster JW; Daetwyler HD; Cogan NOI
    Theor Appl Genet; 2018 Sep; 131(9):1891-1902. PubMed ID: 29860624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population.
    O'Connor KM; Hayes BJ; Hardner CM; Alam M; Henry RJ; Topp BL
    BMC Genomics; 2021 May; 22(1):370. PubMed ID: 34016055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding.
    Voss-Fels KP; Wei X; Ross EM; Frisch M; Aitken KS; Cooper M; Hayes BJ
    Theor Appl Genet; 2021 May; 134(5):1493-1511. PubMed ID: 33587151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal implementation of genomic selection in clone breeding programs-Exemplified in potato: I. Effect of selection strategy, implementation stage, and selection intensity on short-term genetic gain.
    Wu PY; Stich B; Renner J; Muders K; Prigge V; van Inghelandt D
    Plant Genome; 2023 Jun; 16(2):e20327. PubMed ID: 37177848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs.
    See GM; Fix JS; Schwab CR; Spangler ML
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.
    Daetwyler HD; Hayden MJ; Spangenberg GC; Hayes BJ
    Genetics; 2015 Aug; 200(4):1341-8. PubMed ID: 26092719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Different Strategies for Exploiting Genomic Selection in Perennial Ryegrass Breeding Programs.
    Esfandyari H; Fè D; Tessema BB; Janss LL; Jensen J
    G3 (Bethesda); 2020 Oct; 10(10):3783-3795. PubMed ID: 32819970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits.
    Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH
    Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce.
    Chen ZQ; Baison J; Pan J; Karlsson B; Andersson B; Westin J; García-Gil MR; Wu HX
    BMC Genomics; 2018 Dec; 19(1):946. PubMed ID: 30563448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).
    Lenz PRN; Beaulieu J; Mansfield SD; Clément S; Desponts M; Bousquet J
    BMC Genomics; 2017 Apr; 18(1):335. PubMed ID: 28454519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pea genomic selection for Italian environments.
    Annicchiarico P; Nazzicari N; Pecetti L; Romani M; Russi L
    BMC Genomics; 2019 Jul; 20(1):603. PubMed ID: 31331290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs.
    Michel S; Löschenberger F; Ametz C; Bürstmayr H
    Theor Appl Genet; 2021 May; 134(5):1575-1586. PubMed ID: 33638651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expected benefit of genomic selection over forward selection in conifer breeding and deployment.
    Li Y; Dungey HS
    PLoS One; 2018; 13(12):e0208232. PubMed ID: 30532178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.