These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35316610)

  • 1. Neural Algorithms and Circuits for Motor Planning.
    Inagaki HK; Chen S; Daie K; Finkelstein A; Fontolan L; Romani S; Svoboda K
    Annu Rev Neurosci; 2022 Jul; 45():249-271. PubMed ID: 35316610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of movement planning: motor cortex and beyond.
    Svoboda K; Li N
    Curr Opin Neurobiol; 2018 Apr; 49():33-41. PubMed ID: 29172091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates.
    Kalaska JF
    F1000Res; 2019; 8():. PubMed ID: 31275561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-wide neural activity underlying memory-guided movement.
    Chen S; Liu Y; Wang ZA; Colonell J; Liu LD; Hou H; Tien NW; Wang T; Harris T; Druckmann S; Li N; Svoboda K
    Cell; 2024 Feb; 187(3):676-691.e16. PubMed ID: 38306983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement.
    Inagaki HK; Chen S; Ridder MC; Sah P; Li N; Yang Z; Hasanbegovic H; Gao Z; Gerfen CR; Svoboda K
    Cell; 2022 Mar; 185(6):1065-1081.e23. PubMed ID: 35245431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.
    Pandarinath C; Ames KC; Russo AA; Farshchian A; Miller LE; Dyer EL; Kao JC
    J Neurosci; 2018 Oct; 38(44):9390-9401. PubMed ID: 30381431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-Spiking Interneurons of the Premotor Cortex Contribute to Initiation and Execution of Spontaneous Actions.
    Giordano N; Alia C; Fruzzetti L; Pasquini M; Palla G; Mazzoni A; Micera S; Fogassi L; Bonini L; Caleo M
    J Neurosci; 2023 Jun; 43(23):4234-4250. PubMed ID: 37197980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion.
    Xing D; Truccolo W; Borton DA
    J Neurosci; 2022 Dec; 42(49):9142-9157. PubMed ID: 36283830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural population dynamics in human motor cortex during movements in people with ALS.
    Pandarinath C; Gilja V; Blabe CH; Nuyujukian P; Sarma AA; Sorice BL; Eskandar EN; Hochberg LR; Henderson JM; Shenoy KV
    Elife; 2015 Jun; 4():e07436. PubMed ID: 26099302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor planning brings human primary somatosensory cortex into action-specific preparatory states.
    Ariani G; Pruszynski JA; Diedrichsen J
    Elife; 2022 Jan; 11():. PubMed ID: 35018886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A motor cortex circuit for motor planning and movement.
    Li N; Chen TW; Guo ZV; Gerfen CR; Svoboda K
    Nature; 2015 Mar; 519(7541):51-6. PubMed ID: 25731172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Code of Motor Planning and Execution during Goal-Directed Movements in Crows.
    Rinnert P; Nieder A
    J Neurosci; 2021 May; 41(18):4060-4072. PubMed ID: 33608384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2018 Jun; 38(25):5759-5773. PubMed ID: 29798892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete attractor dynamics underlies persistent activity in the frontal cortex.
    Inagaki HK; Fontolan L; Romani S; Svoboda K
    Nature; 2019 Feb; 566(7743):212-217. PubMed ID: 30728503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thalamic input to motor cortex facilitates goal-directed action initiation.
    Takahashi N; Moberg S; Zolnik TA; Catanese J; Sachdev RNS; Larkum ME; Jaeger D
    Curr Biol; 2021 Sep; 31(18):4148-4155.e4. PubMed ID: 34302741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical control of arm movements: a dynamical systems perspective.
    Shenoy KV; Sahani M; Churchland MM
    Annu Rev Neurosci; 2013 Jul; 36():337-59. PubMed ID: 23725001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical activity in the null space: permitting preparation without movement.
    Kaufman MT; Churchland MM; Ryu SI; Shenoy KV
    Nat Neurosci; 2014 Mar; 17(3):440-8. PubMed ID: 24487233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement Decomposition in the Primary Motor Cortex.
    Kadmon Harpaz N; Ungarish D; Hatsopoulos NG; Flash T
    Cereb Cortex; 2019 Apr; 29(4):1619-1633. PubMed ID: 29668846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs.
    Thura D; Cisek P
    J Neurosci; 2016 Jan; 36(3):938-56. PubMed ID: 26791222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements.
    Wiegel P; Kurz A; Leukel C
    J Physiol; 2020 Mar; 598(6):1235-1251. PubMed ID: 32057108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.