BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35316627)

  • 1. A simple "turn-on" fluorescent probe capable of recognition cysteine with rapid response and high sensing in living cells and zebrafish.
    Cao X; Lu H; Wei Y; Jin L; Zhang Q; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121167. PubMed ID: 35316627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe.
    Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells.
    Wu Q; Wang K; Wang Z; Sun Y; Cao D; Liu Z; Guan R; Zhao S; Yu X
    Talanta; 2018 May; 181():118-124. PubMed ID: 29426489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation.
    Sun YJ; Zhao DJ; Song B
    Analyst; 2022 Jul; 147(14):3360-3369. PubMed ID: 35762842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells.
    Zhang J; Wang J; Liu J; Ning L; Zhu X; Yu B; Liu X; Yao X; Zhang H
    Anal Chem; 2015; 87(9):4856-63. PubMed ID: 25875053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish.
    Dai Y; Xue T; Zhang X; Misal S; Ji H; Qi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():365-374. PubMed ID: 30921659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-emission fluorescent probe for discriminating cysteine from homocysteine and glutathione in living cells and zebrafish models.
    Lu Z; Lu Y; Sun X; Fan C; Long Z; Gao L
    Bioorg Chem; 2019 Nov; 92():103215. PubMed ID: 31541803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-photon fluorescent probe for highly selective detection of Cys over GSH and Hcy based on the Michael addition and transcyclization mechanism and its application in bioimaging and protein straining in SDS-PAGE.
    Sun Q; Zhang T; Ren Y; Qiu Y; Luo X; Yang J; Liu G
    Anal Chim Acta; 2024 Jun; 1309():342687. PubMed ID: 38772659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new simple phthalimide-based fluorescent probe for highly selective cysteine and bioimaging for living cells.
    Shen Y; Zhang X; Zhang Y; Zhang C; Jin J; Li H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():371-375. PubMed ID: 28601704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple indanone-based red emission fluorescent probe for the rapid detection of cysteine in vitro and in vivo.
    Wei Y; Lu H; Jin L; Zhang Q; Jiang M; Tian G; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123196. PubMed ID: 37515887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells.
    Wang N; Chen M; Gao J; Ji X; He J; Zhang J; Zhao W
    Talanta; 2019 Apr; 195():281-289. PubMed ID: 30625544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple lysosome-targeted fluorescent probe based on flavonoid for detection of cysteine in living cells.
    Tan H; Zou Y; Guo J; Chen J; Zhou L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121552. PubMed ID: 35759931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine.
    Lv H; Yang XF; Zhong Y; Guo Y; Li Z; Li H
    Anal Chem; 2014 Feb; 86(3):1800-7. PubMed ID: 24410246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple and Effective Ratiometric Fluorescent Probe for the Selective Detection of Cysteine and Homocysteine in Aqueous Media.
    Na R; Zhu M; Fan S; Wang Z; Wu X; Tang J; Liu J; Wang Y; Hua R
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27527138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.
    Zhang J; Lv Y; Zhang W; Ding H; Liu R; Zhao Y; Zhang G; Tian Z
    Talanta; 2016; 146():41-8. PubMed ID: 26695232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release.
    Sun YJ; Yu C
    J Mater Chem B; 2021 Oct; 9(39):8263-8271. PubMed ID: 34499076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodol-based far-red fluorescent probe for the detection of cysteine and homocysteine over glutathione.
    Liu Y; Xiang K; Tian B; Zhang J
    Luminescence; 2017 Feb; 32(1):78-85. PubMed ID: 27097836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel benzothiazole-based fluorescent probe for cysteine detection and its application on test paper and in living cells.
    Yu Y; Xu H; Zhang W; Wang B; Jiang Y
    Talanta; 2018 Jan; 176():151-155. PubMed ID: 28917734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.