These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35316633)
1. Integration of in-situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate. Cho YC; Hsu CC; Lin YP J Hazard Mater; 2022 Jun; 432():128726. PubMed ID: 35316633 [TBL] [Abstract][Full Text] [Related]
2. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Zhang T; Chen Y; Wang Y; Le Roux J; Yang Y; Croué JP Environ Sci Technol; 2014 May; 48(10):5868-75. PubMed ID: 24779765 [TBL] [Abstract][Full Text] [Related]
3. Electron-transfer-dominated non-radical activation of peroxydisulfate for efficient removal of chlorophenol contaminants by one-pot synthesized nitrogen and sulfur codoped mesoporous carbon. Yang J; He X; Dai J; Chen Y; Li Y; Hu X Environ Res; 2021 Mar; 194():110496. PubMed ID: 33220245 [TBL] [Abstract][Full Text] [Related]
4. Oxygen vacancy-mediated peroxydisulfate activation and singlet oxygen generation toward 2,4-dichlorophenol degradation on specific CuO Pan M; Tang-Hu SY; Li C; Hong J; Liu S; Pan B J Hazard Mater; 2023 Jan; 441():129944. PubMed ID: 36116314 [TBL] [Abstract][Full Text] [Related]
5. Removal of chlorophenols from groundwater by chitosan sorption. Zheng S; Yang Z; Jo DH; Park YH Water Res; 2004 May; 38(9):2314-21. PubMed ID: 15142792 [TBL] [Abstract][Full Text] [Related]
6. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Benitez FJ; Beltran-Heredia J; Acero JL; Rubio FJ Chemosphere; 2000 Oct; 41(8):1271-7. PubMed ID: 10901258 [TBL] [Abstract][Full Text] [Related]
7. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants. McGachy L; Sedlak DL Environ Sci Technol; 2024 Jan; 58(1):17-32. PubMed ID: 38110187 [TBL] [Abstract][Full Text] [Related]
8. Magnetic biochar supported α-MnO Zhou H; Zhu X; Chen B Sci Total Environ; 2020 Jul; 724():138278. PubMed ID: 32247983 [TBL] [Abstract][Full Text] [Related]
9. Degradation of 2,4-dichlorophenol by CuO-activated peroxydisulfate: Importance of surface-bound radicals and reaction kinetics. Cho YC; Lin RY; Lin YP Sci Total Environ; 2020 Jan; 699():134379. PubMed ID: 31522041 [TBL] [Abstract][Full Text] [Related]
10. Activation of peroxydisulfate by carbon nanotube for the degradation of 2,4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer. Chen CY; Cho YC; Lin YP Chemosphere; 2021 Nov; 283():131282. PubMed ID: 34467952 [TBL] [Abstract][Full Text] [Related]
11. Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants. Thirumavalavan M Int J Biol Macromol; 2023 Jul; 243():125276. PubMed ID: 37301344 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Nano-Fe@NdFeB/AC magnetic catalytic particle electrodes and application in the degradation of 2,4,6-trichlorophenol by electro-assisted peroxydisulfate process. Yang C; Ren B; Wang D; Tang Q Environ Technol; 2020 Aug; 41(19):2464-2477. PubMed ID: 30640565 [TBL] [Abstract][Full Text] [Related]
13. Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO(2)/UV. González LF; Sarria V; Sánchez OF Bioresour Technol; 2010 May; 101(10):3493-9. PubMed ID: 20097065 [TBL] [Abstract][Full Text] [Related]
14. Wet peroxide oxidation of chlorophenols. García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624 [TBL] [Abstract][Full Text] [Related]
15. Thermo-activated peroxydisulfate oxidation of indomethacin: Kinetics study and influences of co-existing substances. Li R; Cai M; Liu H; Liu G; Lv W Chemosphere; 2018 Dec; 212():1067-1075. PubMed ID: 30286536 [TBL] [Abstract][Full Text] [Related]
16. Degradation and Detoxification of Chlorophenols with Different Structure by LAC-4 Laccase Purified from White-Rot Fungus Deng W; Zhao W; Yang Y Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805809 [TBL] [Abstract][Full Text] [Related]
17. pH-dependent aquatic criteria for 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol. Xing L; Liu H; Giesy JP; Yu H Sci Total Environ; 2012 Dec; 441():125-31. PubMed ID: 23137977 [TBL] [Abstract][Full Text] [Related]
18. [Sodium peroxydisulfate activation by heat and Fe(II) for the degradation of 4-CP]. Zhao JY; Zhang YB; Quan X; Zhao YZ Huan Jing Ke Xue; 2010 May; 31(5):1233-8. PubMed ID: 20623857 [TBL] [Abstract][Full Text] [Related]
19. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier. Sun Y; Gao K; Zhang Y; Zou H Environ Sci Pollut Res Int; 2017 Dec; 24(36):28142-28151. PubMed ID: 29019041 [TBL] [Abstract][Full Text] [Related]
20. Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. Song-hu Y; Xiao-hua L J Hazard Mater; 2005 Feb; 118(1-3):85-92. PubMed ID: 15721532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]