These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35316641)
1. Assessment of shear-thinning fluids and strategies for enhanced in situ removal of heavy chlorinated compounds-DNAPLs in an anisotropic aquifer. Bouzid I; Fatin-Rouge N J Hazard Mater; 2022 Jun; 432():128703. PubMed ID: 35316641 [TBL] [Abstract][Full Text] [Related]
2. Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. Maire J; Coyer A; Fatin-Rouge N J Hazard Mater; 2015 Dec; 299():630-8. PubMed ID: 26291781 [TBL] [Abstract][Full Text] [Related]
3. Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. Maire J; Fatin-Rouge N J Hazard Mater; 2017 Jan; 321():247-255. PubMed ID: 27631687 [TBL] [Abstract][Full Text] [Related]
4. Remediation of multilayer soils contaminated by heavy chlorinated solvents using biopolymer-surfactant mixtures: Two-dimensional flow experiments and simulations. Alamooti A; Colombano S; Glabe ZA; Lion F; Davarzani D; Ahmadi-Sénichault A Water Res; 2023 Sep; 243():120305. PubMed ID: 37441897 [TBL] [Abstract][Full Text] [Related]
5. 3D numerical modelling of a pulsed pumping process of a large DNAPL pool: In situ pilot-scale case study of hexachlorobutadiene in a keyed enclosure. Giraud Q; Gonçalvès J; Paris B; Joubert A; Colombano S; Cazaux D J Contam Hydrol; 2018 Jul; 214():24-38. PubMed ID: 29807703 [TBL] [Abstract][Full Text] [Related]
6. In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles. Mdlovu NV; Lin KS; Chen CY; Mavuso FA; Kunene SC; Carrera Espinoza MJ Chemosphere; 2019 Jun; 224():816-826. PubMed ID: 30851533 [TBL] [Abstract][Full Text] [Related]
7. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Maire J; Joubert A; Kaifas D; Invernizzi T; Marduel J; Colombano S; Cazaux D; Marion C; Klein PY; Dumestre A; Fatin-Rouge N Sci Total Environ; 2018 Jan; 612():1149-1158. PubMed ID: 28892859 [TBL] [Abstract][Full Text] [Related]
8. Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons. Filippini M; Parker BL; Dinelli E; Wanner P; Chapman SW; Gargini A Water Res; 2020 Mar; 171():115388. PubMed ID: 31877474 [TBL] [Abstract][Full Text] [Related]
9. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction. Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470 [TBL] [Abstract][Full Text] [Related]
10. Shear-thinning fluids for gravity and anisotropy mitigation during soil remediation in the vadose zone. Maire J; Brunol E; Fatin-Rouge N Chemosphere; 2018 Apr; 197():661-669. PubMed ID: 29407830 [TBL] [Abstract][Full Text] [Related]
11. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar. Hauswirth SC; Miller CT J Contam Hydrol; 2014 Oct; 167():44-60. PubMed ID: 25190671 [TBL] [Abstract][Full Text] [Related]
12. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Phenrat T; Kumloet I Water Res; 2016 Dec; 107():19-28. PubMed ID: 27788401 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir. Valletti N; Budroni MA; Albanese P; Marchettini N; Sanchez-Dominguez M; Lagzi I; Rossi F Water Res; 2023 Mar; 231():119608. PubMed ID: 36709564 [TBL] [Abstract][Full Text] [Related]
14. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal. Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505 [TBL] [Abstract][Full Text] [Related]
15. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
16. Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production. Santos A; Domínguez CM; Lorenzo D; García-Cervilla R; Lominchar MA; Fernández J; Gómez J; Guadaño J Heliyon; 2019 Nov; 5(11):e02875. PubMed ID: 31768444 [TBL] [Abstract][Full Text] [Related]
17. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments. Deng Y; Shi X; Zhang Z; Sun Y; Wu J; Qian J J Contam Hydrol; 2020 Mar; 230():103603. PubMed ID: 31980237 [TBL] [Abstract][Full Text] [Related]
18. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products. de Weert JP; Keijzer TJ; van Gaans PF Chemosphere; 2014 Dec; 117():94-103. PubMed ID: 24974015 [TBL] [Abstract][Full Text] [Related]
19. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments. Kim H; Ahn D; Annable MD J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745 [TBL] [Abstract][Full Text] [Related]
20. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study. Wu B; Li H; Du X; Zhong L; Yang B; Du P; Gu Q; Li F Chemosphere; 2016 Feb; 144():2142-9. PubMed ID: 26583297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]