These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35316641)
21. Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes. Bouzid I; Maire J; Laurent F; Broquaire M; Fatin-Rouge N Environ Pollut; 2021 Jan; 268(Pt A):115678. PubMed ID: 33007599 [TBL] [Abstract][Full Text] [Related]
22. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. Lorenzo D; García-Cervilla R; Romero A; Santos A Chemosphere; 2020 Jan; 239():124798. PubMed ID: 31527006 [TBL] [Abstract][Full Text] [Related]
23. Sustainable lindane waste remediation: Surfactant-driven residual DNAPL extraction and oxidation in a real landfill (LIFE SURFING). Fernández J; Lorenzo D; Net J; Cano E; Saez P; Herranz C; Domínguez CM; Cotillas S; Santos A Sci Total Environ; 2024 Jul; 934():173260. PubMed ID: 38761933 [TBL] [Abstract][Full Text] [Related]
24. Using polymer solutions to enhance recovery of mobile coal tar and creosote DNAPLs. Giese SW; Powers SE J Contam Hydrol; 2002 Sep; 58(1-2):147-67. PubMed ID: 12236554 [TBL] [Abstract][Full Text] [Related]
25. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells. Ramsburg CA; Pennell KD Environ Sci Technol; 2002 Jul; 36(14):3176-87. PubMed ID: 12141501 [TBL] [Abstract][Full Text] [Related]
27. Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling. Colombano S; Davarzani H; van Hullebusch ED; Huguenot D; Guyonnet D; Deparis J; Lion F; Ignatiadis I Sci Total Environ; 2021 Mar; 760():143958. PubMed ID: 33341615 [TBL] [Abstract][Full Text] [Related]
28. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern. Martel R; Hébert A; Lefebvre R; Gélinas P; Gabriel U J Contam Hydrol; 2004 Nov; 75(1-2):1-29. PubMed ID: 15385096 [TBL] [Abstract][Full Text] [Related]
29. Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity. Zhao B; Zhu L J Hazard Mater; 2006 Aug; 136(3):513-9. PubMed ID: 16236435 [TBL] [Abstract][Full Text] [Related]
30. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design. Herzog BM; Kleinknecht SM; Haslauer CP; Klaas N J Contam Hydrol; 2023 Sep; 258():104230. PubMed ID: 37481897 [TBL] [Abstract][Full Text] [Related]
31. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application. Yang J; Meng L; Guo L Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708 [TBL] [Abstract][Full Text] [Related]
32. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables. Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134 [TBL] [Abstract][Full Text] [Related]
33. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Maji R; Sudicky EA J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427 [TBL] [Abstract][Full Text] [Related]
34. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. Munholland JL; Mumford KG; Kueper BH J Contam Hydrol; 2016 Jan; 184():14-24. PubMed ID: 26638038 [TBL] [Abstract][Full Text] [Related]
35. Density-modification displacement using colloidal biliquid aphron for entrapped DNAPL contaminated aquifer remediation. Yang C; Liu F; Zhang C; Offiong NA; Dong J J Hazard Mater; 2022 Jun; 432():128641. PubMed ID: 35339835 [TBL] [Abstract][Full Text] [Related]
36. Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns. Gibert O; Abenza M; Reig M; Vecino X; Sánchez D; Arnaldos M; Cortina JL Sci Total Environ; 2022 Mar; 810():152300. PubMed ID: 34896509 [TBL] [Abstract][Full Text] [Related]
37. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization. Wang Z; Yang Z; Chen YF Chemosphere; 2023 Nov; 341():140071. PubMed ID: 37673186 [TBL] [Abstract][Full Text] [Related]
38. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling. Goode DJ; Imbrigiotta TE; Lacombe PJ J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882 [TBL] [Abstract][Full Text] [Related]
39. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol. Ramsburg CA; Pennell KD Environ Sci Technol; 2002 May; 36(9):2082-7. PubMed ID: 12026997 [TBL] [Abstract][Full Text] [Related]
40. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Luna M; Gastone F; Tosco T; Sethi R; Velimirovic M; Gemoets J; Muyshondt R; Sapion H; Klaas N; Bastiaens L J Contam Hydrol; 2015 Oct; 181():46-58. PubMed ID: 25971233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]