BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35316787)

  • 1. Low-cost and easily prepared interface layer towards efficient and negligible hysteresis perovskite solar cells.
    Wu W; Han W; Deng Y; Ren G; Liu C; Guo W
    J Colloid Interface Sci; 2022 Jul; 617():745-751. PubMed ID: 35316787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SnO
    Guan N; Ran C; Wang Y; Chao L; Deng Z; Wu G; Dong H; Bao Y; Lin Z; Song L
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34198-34207. PubMed ID: 34870979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Buried Interface Modification Enables Efficient Tin Perovskite Solar Cells.
    Chen Y; Qi H; Wang K; Kang Z; Pan G; Everett CR; Müller-Buschbaum P; Tong Y; Wang H
    Small Methods; 2024 Feb; 8(2):e2300029. PubMed ID: 37208789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Buried Interface Contact by Bidentate Anchoring for Inverted Perovskite Solar Cells.
    Chen XM; Ye YC; Feng SC; Lv BH; Wang JY; Tang JX; Dou WD
    Small; 2024 May; ():e2401256. PubMed ID: 38752227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells.
    Pang S; Zhang C; Dong H; Zhang Z; Chen D; Zhu W; Chang J; Lin Z; Zhang J; Hao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10110-10119. PubMed ID: 33606489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells.
    Li S; Wu Y; Zhang C; Liu Y; Sun Q; Cui Y; Liu SF; Hao Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45073-45082. PubMed ID: 32921039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Interface Energy Band Alignment Optimization and Defect Passivation toward Efficient and Simple-Structured Perovskite Solar Cell.
    Huang L; Zhang D; Bu S; Peng R; Wei Q; Ge Z
    Adv Sci (Weinh); 2020 Mar; 7(6):1902656. PubMed ID: 32195090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buried Interface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Mechanical Stability.
    Zhao D; Zhang C; Ren J; Li S; Wu Y; Sun Q; Hao Y
    Small; 2024 May; 20(19):e2308364. PubMed ID: 38054792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnO
    Li Y; Yao D; Tang Z; Jiang B; Li C; Gao Y; Tian N; Wang J; Zheng G; Long F
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9388-9399. PubMed ID: 38324460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency.
    Zheng J; Chen J; Ouyang D; Huang Z; He X; Kim J; Choy WCH
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57165-57173. PubMed ID: 33296167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation.
    Cao J; Wu B; Chen R; Wu Y; Hui Y; Mao BW; Zheng N
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.
    Wang G; Wang L; Qiu J; Yan Z; Li C; Dai C; Zhen C; Tai K; Yu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7690-7700. PubMed ID: 31961639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Interfacial Defect Passivation and Bottom-Up Excess PbI
    Wang H; Luo H; Yang L; Liu X; Li H; Liu S; Tang Y; Ye Z; Long W
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4854-4862. PubMed ID: 38252590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport.
    Xiao K; Cui C; Wang P; Lin P; Qiang Y; Xu L; Xie J; Yang Z; Zhu X; Yu X; Yang D
    Nanotechnology; 2018 Feb; 29(6):065401. PubMed ID: 29219844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased surface defects and non-radiative recombination
    Kara DA; Cirak D; Gultekin B
    Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Layer Deposition of an Effective Interface Layer of TiN for Efficient and Hysteresis-Free Mesoscopic Perovskite Solar Cells.
    Chavan RD; Tavakoli MM; Prochowicz D; Yadav P; Lote SS; Bhoite SP; Nimbalkar A; Hong CK
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8098-8106. PubMed ID: 31994862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells.
    Sun Q; Zong B; Meng X; Shen B; Li X; Kang B; Silva SRP
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6702-6713. PubMed ID: 35077142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis.
    Zhu M; Liu W; Ke W; Xie L; Dong P; Hao F
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):666-673. PubMed ID: 30525394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Planar Perovskite Solar Cells with a Reduced Energy Barrier and Enhanced Charge Extraction via a Na
    Xiao B; Li X; Yi Z; Luo Y; Jiang Q; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7962-7971. PubMed ID: 35119820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.