These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35316845)

  • 1. Multi-objective optimisation of polymerase chain reaction continuous flow systems.
    Zagklavara F; Jimack PK; Kapur N; Querin OM; Thompson HM
    Biomed Microdevices; 2022 Mar; 24(2):16. PubMed ID: 35316845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification.
    Kulkarni MB; Goyal S; Dhar A; Sriram D; Goel S
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):97-104. PubMed ID: 34170829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid PCR in a continuous flow device.
    Hashimoto M; Chen PC; Mitchell MW; Nikitopoulos DE; Soper SA; Murphy MC
    Lab Chip; 2004 Dec; 4(6):638-45. PubMed ID: 15570378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection.
    Obeid PJ; Christopoulos TK; Crabtree HJ; Backhouse CJ
    Anal Chem; 2003 Jan; 75(2):288-95. PubMed ID: 12553764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.
    Chen PC; Park DS; You BH; Kim N; Park T; Soper SA; Nikitopoulos DE; Murphy MC
    Sens Actuators B Chem; 2010 Aug; 149(1):291-300. PubMed ID: 20871807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast DNA Amplification Using Microchannel Flow-Through PCR Device.
    Lin YH; Liao XJ; Chang W; Chiou CC
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastic microfluidic chip for continuous-flow polymerase chain reaction: simulations and experiments.
    Cao Q; Kim MC; Klapperich C
    Biotechnol J; 2011 Feb; 6(2):177-84. PubMed ID: 21298803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification.
    Kaprou GD; Papadopoulos V; Papageorgiou DP; Kefala I; Papadakis G; Gizeli E; Chatzandroulis S; Kokkoris G; Tserepi A
    Anal Bioanal Chem; 2019 Aug; 411(20):5297-5307. PubMed ID: 31161322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure.
    Fuchiwaki Y; Nagai H; Saito M; Tamiya E
    Biosens Bioelectron; 2011 Sep; 27(1):88-94. PubMed ID: 21778045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-heater flow-through polymerase chain reaction device by heat pipes cooling.
    Chen JJ; Liao MH; Li KT; Shen CM
    Biomicrofluidics; 2015 Jan; 9(1):014107. PubMed ID: 25713689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel-processing continuous-flow device for optimization-free polymerase chain reaction.
    Kim H; Park N; Hahn JH
    Anal Bioanal Chem; 2016 Sep; 408(24):6751-8. PubMed ID: 27473429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A disposable, continuous-flow polymerase chain reaction device: design, fabrication and evaluation.
    Ragsdale V; Li H; Sant H; Ameel T; Gale BK
    Biomed Microdevices; 2016 Aug; 18(4):62. PubMed ID: 27393216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater.
    Wu W; Lee NY
    Anal Bioanal Chem; 2011 Jun; 400(7):2053-60. PubMed ID: 21479543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical liquid plug flow-through polymerase chain-reaction system based on a heat-resistant resin chip.
    Fuchiwaki Y; Saito M; Wakida S; Tamiya E; Nagai H
    Anal Sci; 2011; 27(3):225-30. PubMed ID: 21415501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical study of a microfludic DNA amplification chip using water cooling effect.
    Chen JJ; Shen CM; Ko YW
    Biomed Microdevices; 2013 Apr; 15(2):261-78. PubMed ID: 23179465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.
    Shu B; Zhang C; Xing D
    Anal Chim Acta; 2014 May; 826():51-60. PubMed ID: 24793853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of the polymerase chain reaction.
    Harris S; Jones DB
    Br J Biomed Sci; 1997 Sep; 54(3):166-73. PubMed ID: 9499593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for interactive multi-objective dose-guided patient positioning.
    Haehnle J; Süss P; Landry G; Teichert K; Hille L; Hofmaier J; Nowak D; Kamp F; Reiner M; Thieke C; Ganswindt U; Belka C; Parodi K; Küfer KH; Kurz C
    Phys Med Biol; 2017 Jan; 62(1):165-185. PubMed ID: 27991454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.