These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35316865)

  • 41. Combining voltammetry and ion chromatography: application to the selective reduction of nitrate on Pt and PtSn electrodes.
    Yang J; Kwon Y; Duca M; Koper MT
    Anal Chem; 2013 Aug; 85(16):7645-9. PubMed ID: 23899010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction.
    Qian H; Zhao Z; Velazquez JC; Pretzer LA; Heck KN; Wong MS
    Nanoscale; 2014 Jan; 6(1):358-64. PubMed ID: 24195966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient Nitrate Reduction over Novel Covalent Ag-Salophen Polymer-Derived "Vein-Leaf-Apple"-like Ag@Carbon Structures.
    Liu J; Cheng T; Jiang L; Kong A; Shan Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33186-33195. PubMed ID: 32584018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrocatalytic Nitrate Reduction by a Cobalt Protoporphyrin Immobilized on a Pyrolytic Graphite Electrode.
    Shen J; Birdja YY; Koper MT
    Langmuir; 2015 Aug; 31(30):8495-501. PubMed ID: 26154347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics and mechanism of the cobalt phthalocyanine catalyzed reduction of nitrite and nitrate by dithionite in aqueous solution.
    Kudrik EV; Makarov SV; Zahi A; van Eldik R
    Inorg Chem; 2003 Jan; 42(2):618-24. PubMed ID: 12693247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Activated Sludge Mineralization and Solutions in the Process of Zero-Valent Iron Autotrophic Denitrification].
    Zhang NB; Li X; Huang Y; Zhang WJ
    Huan Jing Ke Xue; 2017 Sep; 38(9):3793-3800. PubMed ID: 29965261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill.
    Yao J; Chen L; Zhu H; Shen D; Qiu Z
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10401-10409. PubMed ID: 28281059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesoporous metallic rhodium nanoparticles.
    Jiang B; Li C; Dag Ö; Abe H; Takei T; Imai T; Hossain MSA; Islam MT; Wood K; Henzie J; Yamauchi Y
    Nat Commun; 2017 May; 8():15581. PubMed ID: 28524873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes.
    Katsounaros I; Dortsiou M; Kyriacou G
    J Hazard Mater; 2009 Nov; 171(1-3):323-7. PubMed ID: 19559523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate.
    Kuang P; Natsui K; Einaga Y
    Chemosphere; 2018 Nov; 210():524-530. PubMed ID: 30029144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrocatalytic reduction of nitrate ions from water using polyaniline nanofibers modified gold electrode.
    Olad A; Farshi F; Ettehadi J
    Water Environ Res; 2012 Feb; 84(2):144-9. PubMed ID: 22515064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity.
    Ketpang K; Lee K; Shanmugam S
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16734-44. PubMed ID: 25203667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential control of anode/cathode potentials of paired electrolysis for simultaneous removal of chemical oxygen demand and total nitrogen.
    Yao J; Pan B; Shen R; Yuan T; Wang J
    Sci Total Environ; 2019 Oct; 687():198-205. PubMed ID: 31207510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting.
    Liu M; Hof F; Moro M; Valenti G; Paolucci F; Pénicaud A
    Nanoscale; 2020 Oct; 12(39):20165-20170. PubMed ID: 33001129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduction of nitrous acid with a macrocyclic rhodium complex that acts as a functional model of nitrite reductase.
    Kristian KE; Bakac A
    Inorg Chem; 2012 Apr; 51(8):4877-82. PubMed ID: 22480334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor.
    Ma J; Wei W; Qin G; Xiao T; Tang W; Zhao S; Jiang L; Liu S
    Water Res; 2022 Jan; 208():117862. PubMed ID: 34814021
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of a two-step process to denitrification of synthetic brines: electroreduction in a dual-chamber cell and catalytic reduction.
    Beltrame TF; Zoppas FM; Marder L; Marchesini FA; Miró E; Bernardes AM
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1956-1968. PubMed ID: 31768960
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bi
    Chen M; Bi J; Huang X; Wang T; Wang Z; Hao H
    Chemosphere; 2021 Sep; 278():130386. PubMed ID: 33823352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical regeneration of zeolites and the removal of ammonia.
    Lei X; Li M; Zhang Z; Feng C; Bai W; Sugiura N
    J Hazard Mater; 2009 Sep; 169(1-3):746-50. PubMed ID: 19411139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective Etching Induced Synthesis of Hollow Rh Nanospheres Electrocatalyst for Alcohol Oxidation Reactions.
    Kang YQ; Xue Q; Zhao Y; Li XF; Jin PJ; Chen Y
    Small; 2018 Jun; ():e1801239. PubMed ID: 29882268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.