These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35317230)

  • 1. Protein-ligand binding affinity prediction based on profiles of intermolecular contacts.
    Wang DD; Chan MT
    Comput Struct Biotechnol J; 2022; 20():1088-1096. PubMed ID: 35317230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based protein-ligand interaction fingerprints for binding affinity prediction.
    Wang DD; Chan MT; Yan H
    Comput Struct Biotechnol J; 2021; 19():6291-6300. PubMed ID: 34900139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteo-chemometrics interaction fingerprints of protein-ligand complexes predict binding affinity.
    Wang DD; Xie H; Yan H
    Bioinformatics; 2021 Sep; 37(17):2570-2579. PubMed ID: 33650636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts.
    Karimi M; Wu D; Wang Z; Shen Y
    J Chem Inf Model; 2021 Jan; 61(1):46-66. PubMed ID: 33347301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified Physicochemical Features.
    Holderbach S; Adam L; Jayaram B; Wade RC; Mukherjee G
    Front Mol Biosci; 2020; 7():601065. PubMed ID: 33392260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints.
    Fujimoto KJ; Minami S; Yanai T
    ACS Omega; 2022 Jun; 7(22):19030-19039. PubMed ID: 35694525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein-Ligand Binding Affinity Prediction.
    Zheng L; Fan J; Mu Y
    ACS Omega; 2019 Oct; 4(14):15956-15965. PubMed ID: 31592466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scoring Functions for Protein-Ligand Binding Affinity Prediction using Structure-Based Deep Learning: A Review.
    Meli R; Morris GM; Biggin PC
    Front Bioinform; 2022 Jun; 2():. PubMed ID: 36187180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distance dependent scoring function for describing protein-ligand intermolecular interactions.
    Artemenko N
    J Chem Inf Model; 2008 Mar; 48(3):569-74. PubMed ID: 18290639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS.
    Bitencourt-Ferreira G; Rizzotto C; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(9):1746-1756. PubMed ID: 32410551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.