These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35317236)

  • 21. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: theoretical and experimental study of the effect of glutamic acid 284 on the protonation state of lysine 213.
    González-Nilo FD; Krautwurst H; Yévenes A; Cardemil E; Cachau R
    Biochim Biophys Acta; 2002 Sep; 1599(1-2):65-71. PubMed ID: 12479406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free radical transfer, fluctuating structure and reaction cycle of ribonucleotide reductase.
    Ehrenberg A
    Biosystems; 2001; 62(1-3):9-12. PubMed ID: 11595315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access.
    Grāve K; Lambert W; Berggren G; Griese JJ; Bennett MD; Logan DT; Högbom M
    J Biol Inorg Chem; 2019 Sep; 24(6):849-861. PubMed ID: 31410573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox-linked conformational control of proton-coupled electron transfer: Y122 in the ribonucleotide reductase β2 subunit.
    Offenbacher AR; Burns LA; Sherrill CD; Barry BA
    J Phys Chem B; 2013 Jul; 117(28):8457-68. PubMed ID: 23822111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of dimanganese class Ib ribonucleotide reductase by hydrogen peroxide: mechanistic insights from density functional theory.
    Roos K; Siegbahn PE
    Inorg Chem; 2013 Apr; 52(8):4173-84. PubMed ID: 23537220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and function of the Manganese(IV)/Iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase.
    Jiang W; Yun D; Saleh L; Bollinger JM; Krebs C
    Biochemistry; 2008 Dec; 47(52):13736-44. PubMed ID: 19061340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of Proton-Coupled Electron Transfer from Natural Phenolic Compounds in Superoxide Scavenging.
    Nakayama T; Uno B
    Chem Pharm Bull (Tokyo); 2015; 63(12):967-73. PubMed ID: 26633020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase.
    Greene BL; Taguchi AT; Stubbe J; Nocera DG
    J Am Chem Soc; 2017 Nov; 139(46):16657-16665. PubMed ID: 29037038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preserved catalytic activity in an engineered ribonucleotide reductase R2 protein with a nonphysiological radical transfer pathway. The importance of hydrogen bond connections between the participating residues.
    Ekberg M; Pötsch S; Sandin E; Thunnissen M; Nordlund P; Sahlin M; Sjöberg BM
    J Biol Chem; 1998 Aug; 273(33):21003-8. PubMed ID: 9694851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The function of superoxide dismutase during the enzymatic formation of the free radical of ribonucleotide reductase.
    Fontecave M; Gräslund A; Reichard P
    J Biol Chem; 1987 Sep; 262(25):12332-6. PubMed ID: 3040738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of a New Class I Ribonucleotide Reductase with an Essential DOPA Radical and NO Metal as an Initiator of Long-Range Radical Transfer.
    Stubbe J; Seyedsayamdost MR
    Biochemistry; 2019 Feb; 58(6):435-437. PubMed ID: 30586288
    [No Abstract]   [Full Text] [Related]  

  • 32. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5'-phosphate dependent enzymes L-dopa decarboxylase and alanine racemase.
    Lin YL; Gao J; Rubinstein A; Major DT
    Biochim Biophys Acta; 2011 Nov; 1814(11):1438-46. PubMed ID: 21600315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cation mediation of radical transfer between Trp48 and Tyr356 during O2 activation by protein R2 of Escherichia coli ribonucleotide reductase: relevance to R1-R2 radical transfer in nucleotide reduction?
    Saleh L; Bollinger JM
    Biochemistry; 2006 Jul; 45(29):8823-30. PubMed ID: 16846225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical and Mechanistic Study of Reactivities of α-, β-, γ-, and δ-Tocopherol toward Electrogenerated Superoxide in
    Nakayama T; Honda R; Kuwata K; Usui S; Uno B
    Antioxidants (Basel); 2021 Dec; 11(1):. PubMed ID: 35052513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.
    Cotruvo JA; Stubbe J
    Biochemistry; 2010 Feb; 49(6):1297-309. PubMed ID: 20070127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concerted double proton-transfer electron-transfer between catechol and superoxide radical anion.
    Quintero-Saumeth J; Rincón DA; Doerr M; Daza MC
    Phys Chem Chem Phys; 2017 Oct; 19(38):26179-26190. PubMed ID: 28930314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PELDOR spectroscopy with DOPA-beta2 and NH2Y-alpha2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase.
    Seyedsayamdost MR; Chan CT; Mugnaini V; Stubbe J; Bennati M
    J Am Chem Soc; 2007 Dec; 129(51):15748-9. PubMed ID: 18047343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying the proton transfer reaction mechanism via a proton-bound dimeric intermediate for esomeprazoles by a kinetic method combined with density functional theory calculations.
    Cao X; Zhang F; Zhu K; Ye X; Shen L; Chen J; Mo W
    Rapid Commun Mass Spectrom; 2014 May; 28(9):1045-50. PubMed ID: 24677526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket.
    Liu A; Pötsch S; Davydov A; Barra AL; Rubin H; Gräslund A
    Biochemistry; 1998 Nov; 37(46):16369-77. PubMed ID: 9819229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.