BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35317470)

  • 1. Development of portable and robust cataract detection and grading system by analyzing multiple texture features for Tele-Ophthalmology.
    Pathak S; Raj R; Singh K; Verma PK; Kumar B
    Multimed Tools Appl; 2022; 81(16):23355-23371. PubMed ID: 35317470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a Connected Mobile Cataract Screening System: A Future Approach.
    Wan Zaki WMD; Abdul Mutalib H; Ramlan LA; Hussain A; Mustapha A
    J Imaging; 2022 Feb; 8(2):. PubMed ID: 35200743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic cataract grading methods based on deep learning.
    Zhang H; Niu K; Xiong Y; Yang W; He Z; Song H
    Comput Methods Programs Biomed; 2019 Dec; 182():104978. PubMed ID: 31450174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portable Handheld Slit-Lamp Based on a Smartphone Camera for Cataract Screening.
    Hu S; Wu H; Luan X; Wang Z; Adu M; Wang X; Yan C; Li B; Li K; Zou Y; Yu X; He X; He W
    J Ophthalmol; 2020; 2020():1037689. PubMed ID: 32832134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting ensemble learning for automatic cataract detection and grading.
    Yang JJ; Li J; Shen R; Zeng Y; He J; Bi J; Li Y; Zhang Q; Peng L; Wang Q
    Comput Methods Programs Biomed; 2016 Feb; 124():45-57. PubMed ID: 26563686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Cataract Using Smartphones.
    Askarian B; Ho P; Chong JW
    IEEE J Transl Eng Health Med; 2021; 9():3800110. PubMed ID: 34786216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fred Hollows lecture: digital screening for eye disease.
    Constable IJ; Yogesan K; Eikelboom R; Barry C; Cuypers M
    Clin Exp Ophthalmol; 2000 Jun; 28(3):129-32. PubMed ID: 10981779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Approach to Evaluate Blurriness in Retinal Images with Vitreous Opacity for Cataract Diagnosis.
    Xiong L; Li H; Xu L
    J Healthc Eng; 2017; 2017():5645498. PubMed ID: 29065620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphones, tele-ophthalmology, and VISION 2020.
    Mohammadpour M; Heidari Z; Mirghorbani M; Hashemi H
    Int J Ophthalmol; 2017; 10(12):1909-1918. PubMed ID: 29259912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning.
    Gao X; Lin S; Wong TY
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2693-701. PubMed ID: 26080373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACCV: automatic classification algorithm of cataract video based on deep learning.
    Hu S; Luan X; Wu H; Wang X; Yan C; Wang J; Liu G; He W
    Biomed Eng Online; 2021 Aug; 20(1):78. PubMed ID: 34353324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decision Support System for Detection of Papilledema through Fundus Retinal Images.
    Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU
    J Med Syst; 2017 Apr; 41(4):66. PubMed ID: 28283997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep network DeepOpacityNet for detection of cataracts from color fundus photographs.
    Elsawy A; Keenan TDL; Chen Q; Thavikulwat AT; Bhandari S; Quek TC; Goh JHL; Tham YC; Cheng CY; Chew EY; Lu Z
    Commun Med (Lond); 2023 Dec; 3(1):184. PubMed ID: 38104223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AI-based diagnosis of nuclear cataract from slit-lamp videos.
    Shimizu E; Tanji M; Nakayama S; Ishikawa T; Agata N; Yokoiwa R; Nishimura H; Khemlani RJ; Sato S; Hanyuda A; Sato Y
    Sci Rep; 2023 Dec; 13(1):22046. PubMed ID: 38086904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Technical Options of Documentation of the Anterior Segment and the eye Fundus Findings within Mission].
    Furdová A; Krčméry V; Horkovičová K; Furdová A; Sláviková T
    Cesk Slov Oftalmol; 2016; 72(3):86-90. PubMed ID: 27658976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tele-ophthalmology: Opportunities for improving diabetes eye care in resource- and specialist-limited Sub-Saharan African countries.
    Matimba A; Woodward R; Tambo E; Ramsay M; Gwanzura L; Guramatunhu S
    J Telemed Telecare; 2016 Jul; 22(5):311-6. PubMed ID: 26407990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada.
    Boucher MC; Desroches G; Garcia-Salinas R; Kherani A; Maberley D; Olivier S; Oh M; Stockl F
    Can J Ophthalmol; 2008 Dec; 43(6):658-68. PubMed ID: 19020631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study.
    Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N
    Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.
    Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR
    Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.