These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35317562)
1. An orbital-based representation for accurate quantum machine learning. Karandashev K; von Lilienfeld OA J Chem Phys; 2022 Mar; 156(11):114101. PubMed ID: 35317562 [TBL] [Abstract][Full Text] [Related]
2. Alchemical and structural distribution based representation for universal quantum machine learning. Faber FA; Christensen AS; Huang B; von Lilienfeld OA J Chem Phys; 2018 Jun; 148(24):241717. PubMed ID: 29960351 [TBL] [Abstract][Full Text] [Related]
3. Selected machine learning of HOMO-LUMO gaps with improved data-efficiency. Mazouin B; Schöpfer AA; von Lilienfeld OA Mater Adv; 2022 Nov; 3(22):8306-8316. PubMed ID: 36561279 [TBL] [Abstract][Full Text] [Related]
4. Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations. Khan D; Heinen S; von Lilienfeld OA J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462285 [TBL] [Abstract][Full Text] [Related]
5. Novel machine learning insights into the QM7b and QM9 quantum mechanics datasets. Valdés JJ; Tchagang AB J Comput Chem; 2024 Jun; 45(15):1193-1214. PubMed ID: 38329198 [TBL] [Abstract][Full Text] [Related]
6. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF J Chem Phys; 2020 Sep; 153(12):124111. PubMed ID: 33003742 [TBL] [Abstract][Full Text] [Related]
7. Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions. Llenga S; Gryn'ova G J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37265212 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints. Rahaman O; Gagliardi A J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351 [TBL] [Abstract][Full Text] [Related]
9. FCHL revisited: Faster and more accurate quantum machine learning. Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071 [TBL] [Abstract][Full Text] [Related]
10. Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition Gaussian process regression. Cheng L; Sun J; Deustua JE; Bhethanabotla VC; Miller TF J Chem Phys; 2022 Oct; 157(15):154105. PubMed ID: 36272799 [TBL] [Abstract][Full Text] [Related]
11. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. Hansen K; Montavon G; Biegler F; Fazli S; Rupp M; Scheffler M; von Lilienfeld OA; Tkatchenko A; Müller KR J Chem Theory Comput; 2013 Aug; 9(8):3404-19. PubMed ID: 26584096 [TBL] [Abstract][Full Text] [Related]
12. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232 [TBL] [Abstract][Full Text] [Related]
13. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. Teale AM; De Proft F; Tozer DJ J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637 [TBL] [Abstract][Full Text] [Related]
14. Accurate GW frontier orbital energies of 134 kilo molecules. Fediai A; Reiser P; Peña JEO; Friederich P; Wenzel W Sci Data; 2023 Sep; 10(1):581. PubMed ID: 37669957 [TBL] [Abstract][Full Text] [Related]
15. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. Dral PO; Owens A; Yurchenko SN; Thiel W J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062 [TBL] [Abstract][Full Text] [Related]
16. Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states. Husch T; Sun J; Cheng L; Lee SJR; Miller TF J Chem Phys; 2021 Feb; 154(6):064108. PubMed ID: 33588560 [TBL] [Abstract][Full Text] [Related]
17. Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties. Christensen AS; von Lilienfeld OA Chimia (Aarau); 2019 Dec; 73(12):1028-1031. PubMed ID: 31883556 [TBL] [Abstract][Full Text] [Related]
18. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning. Bučko T; Gešvandtnerová M; Rocca D J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917 [TBL] [Abstract][Full Text] [Related]
19. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity. Huang B; von Lilienfeld OA J Chem Phys; 2016 Oct; 145(16):161102. PubMed ID: 27802646 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals. Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]