These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35317568)

  • 1. Modeling environment-dependent atomic-level properties in complex-concentrated alloys.
    Farnell MS; McClure ZD; Tripathi S; Strachan A
    J Chem Phys; 2022 Mar; 156(11):114102. PubMed ID: 35317568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuations in local shear-fault energy produce unique and dominating strengthening in metastable complex concentrated alloys.
    Li W; Lyu S; Chen Y; Ngan AHW
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2209188120. PubMed ID: 36913568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.
    Wróbel JS; Nguyen-Manh D; Kurzydłowski KJ; Dudarev SL
    J Phys Condens Matter; 2017 Apr; 29(14):145403. PubMed ID: 28177296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys.
    Ullah MW; Xue H; Velisa G; Jin K; Bei H; Weber WJ; Zhang Y
    Sci Rep; 2017 Jun; 7(1):4146. PubMed ID: 28646222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials.
    Jinnouchi R; Karsai F; Verdi C; Asahi R; Kresse G
    J Chem Phys; 2020 Jun; 152(23):234102. PubMed ID: 32571051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Chemical Disorder in Concentrated Alloys: Defect Physics and Radiation Performance.
    Zhang Y; Osetsky YN; Weber WJ
    Chem Rev; 2022 Jan; 122(1):789-829. PubMed ID: 34694124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements.
    Willatt MJ; Musil F; Ceriotti M
    Phys Chem Chem Phys; 2018 Dec; 20(47):29661-29668. PubMed ID: 30465679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques.
    Guziewski M; Montes de Oca Zapiain D; Dingreville R; Coleman SP
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3311-3324. PubMed ID: 33412001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements.
    Pašti IA; Jovanović A; Dobrota AS; Mentus SV; Johansson B; Skorodumova NV
    Phys Chem Chem Phys; 2018 Jan; 20(2):858-865. PubMed ID: 29238768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering atomic-level complexity in high-entropy and complex concentrated alloys.
    Oh HS; Kim SJ; Odbadrakh K; Ryu WH; Yoon KN; Mu S; Körmann F; Ikeda Y; Tasan CC; Raabe D; Egami T; Park ES
    Nat Commun; 2019 May; 10(1):2090. PubMed ID: 31064988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Characterization of Complex Concentrated Alloys with Reduced Content of Critical Raw Materials.
    Șerban BA; Badea IC; Constantin N; Mitrică D; Olaru MT; Burada M; Anasiei I; Bejan SE; Ghiță AN; Popescu AM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions.
    Mitrica D; Badea IC; Serban BA; Olaru MT; Vonica D; Burada M; Piticescu RR; Popov VV
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys.
    Caro A; Crowson DA; Caro M
    Phys Rev Lett; 2005 Aug; 95(7):075702. PubMed ID: 16196797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representing local atomic environment using descriptors based on local correlations.
    Samanta A
    J Chem Phys; 2018 Dec; 149(24):244102. PubMed ID: 30599737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2.
    Zhao S; Stocks GM; Zhang Y
    Phys Chem Chem Phys; 2016 Sep; 18(34):24043-56. PubMed ID: 27523408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers.
    Chi M; Gargouri R; Schrader T; Damak K; Maâlej R; Sierka M
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Ultralight-Weight Complex Concentrated Alloys with High Strength.
    Jia Y; Jia Y; Wu S; Ma X; Wang G
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30965563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.