BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35317575)

  • 1. Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E.
    Grotz KK; Schwierz N
    J Chem Phys; 2022 Mar; 156(11):114501. PubMed ID: 35317575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties.
    Grotz KK; Cruz-León S; Schwierz N
    J Chem Theory Comput; 2021 Apr; 17(4):2530-2540. PubMed ID: 33720710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties in SPC/E, TIP3P-fb, TIP4P/2005, TIP4P-Ew, and TIP4P-D.
    Grotz KK; Schwierz N
    J Chem Theory Comput; 2022 Jan; 18(1):526-537. PubMed ID: 34881568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations.
    Döpke MF; Moultos OA; Hartkamp R
    J Chem Phys; 2020 Jan; 152(2):024501. PubMed ID: 31941316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended magnesium and calcium force field parameters for accurate ion-nucleic acid interactions in biomolecular simulations.
    Cruz-León S; Grotz KK; Schwierz N
    J Chem Phys; 2021 May; 154(17):171102. PubMed ID: 34241062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties.
    Mamatkulov S; Schwierz N
    J Chem Phys; 2018 Feb; 148(7):074504. PubMed ID: 29471634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force fields for divalent cations based on single-ion and ion-pair properties.
    Mamatkulov S; Fyta M; Netz RR
    J Chem Phys; 2013 Jan; 138(2):024505. PubMed ID: 23320702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Li Z; Song LF; Li P; Merz KM
    J Chem Theory Comput; 2020 Jul; 16(7):4429-4442. PubMed ID: 32510956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations.
    Allnér O; Nilsson L; Villa A
    J Chem Theory Comput; 2012 Apr; 8(4):1493-502. PubMed ID: 26596759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg(2+) ion models commonly used in biomolecular simulations.
    Panteva MT; Giambaşu GM; York DM
    J Comput Chem; 2015 May; 36(13):970-82. PubMed ID: 25736394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic pathways of water exchange in the first hydration shell of magnesium: Influence of water model and ionic force field.
    Falkner S; Schwierz N
    J Chem Phys; 2021 Aug; 155(8):084503. PubMed ID: 34470357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarities and Differences between Na
    Kolesnikov ES; Gushchin IY; Zhilyaev PA; Onufriev AV
    J Chem Theory Comput; 2021 Nov; 17(11):7246-7259. PubMed ID: 34633813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Sengupta A; Li Z; Song LF; Li P; Merz KM
    J Chem Inf Model; 2021 Feb; 61(2):869-880. PubMed ID: 33538599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects.
    Rai N; Tiwari SP; Maginn EJ
    J Phys Chem B; 2012 Sep; 116(35):10885-97. PubMed ID: 22857380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.