These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35317596)

  • 1. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic-inorganic interfaces.
    Westermayr J; Chaudhuri S; Jeindl A; Hofmann OT; Maurer RJ
    Digit Discov; 2022 Aug; 1(4):463-475. PubMed ID: 36091414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tell Machine Learning Potentials What They Are Needed For: Simulation-Oriented Training Exemplified for Glycine.
    Ge F; Wang R; Qu C; Zheng P; Nandi A; Conte R; Houston PL; Bowman JM; Dral PO
    J Phys Chem Lett; 2024 Apr; 15(16):4451-4460. PubMed ID: 38626460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes.
    Gastegger M; Kauffmann C; Behler J; Marquetand P
    J Chem Phys; 2016 May; 144(19):194110. PubMed ID: 27208939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Fourth-Generation Machine Learning Potentials Using Quasi-Linear Scaling Particle Mesh Charge Equilibration.
    Gubler M; Finkler JA; Schäfer MR; Behler J; Goedecker S
    J Chem Theory Comput; 2024 Aug; 20(16):7264-71. PubMed ID: 39151921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voxelized Atomic Structure Potentials: Predicting Atomic Forces with the Accuracy of Quantum Mechanics Using Convolutional Neural Networks.
    Barry MC; Wise KE; Kalidindi SR; Kumar S
    J Phys Chem Lett; 2020 Nov; 11(21):9093-9099. PubMed ID: 32985196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Energies from a Convolutional Neural Network.
    Chen X; Jørgensen MS; Li J; Hammer B
    J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.