These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning. Cheng Z; Du J; Zhang L; Ma J; Li W; Li S Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360 [TBL] [Abstract][Full Text] [Related]
25. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials Hajibabaei A; Umer M; Anand R; Ha M; Kim KS J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808 [TBL] [Abstract][Full Text] [Related]
26. Neural Network Potentials: A Concise Overview of Methods. Kocer E; Ko TW; Behler J Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580 [TBL] [Abstract][Full Text] [Related]
27. A neural network potential based on pairwise resolved atomic forces and energies. Kalayan J; Ramzan I; Williams CD; Bryce RA; Burton NA J Comput Chem; 2024 May; 45(14):1143-1151. PubMed ID: 38284556 [TBL] [Abstract][Full Text] [Related]
28. A dual-cutoff machine-learned potential for condensed organic systems obtained Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948 [TBL] [Abstract][Full Text] [Related]
29. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning. Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017 [TBL] [Abstract][Full Text] [Related]
30. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures. Zeng C; Chen X; Peterson AA J Chem Phys; 2022 Feb; 156(6):064104. PubMed ID: 35168344 [TBL] [Abstract][Full Text] [Related]
33. Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces. Sauceda HE; Chmiela S; Poltavsky I; Müller KR; Tkatchenko A J Chem Phys; 2019 Mar; 150(11):114102. PubMed ID: 30901990 [TBL] [Abstract][Full Text] [Related]
34. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. Choi YJ; Jhi SH J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653 [TBL] [Abstract][Full Text] [Related]
37. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning. Novikov IS; Suleimanov YV; Shapeev AV Phys Chem Chem Phys; 2018 Nov; 20(46):29503-29512. PubMed ID: 30457606 [TBL] [Abstract][Full Text] [Related]
38. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840 [TBL] [Abstract][Full Text] [Related]
39. Generating Minimal Training Sets for Machine Learned Potentials. Finkbeiner J; Tovey S; Holm C Phys Rev Lett; 2024 Apr; 132(16):167301. PubMed ID: 38701485 [TBL] [Abstract][Full Text] [Related]
40. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials. Williams CD; Kalayan J; Burton NA; Bryce RA Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]