These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35317596)

  • 21. TrIP─Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias.
    Hedelius BE; Tingey D; Della Corte D
    J Chem Theory Comput; 2024 Jan; 20(1):199-211. PubMed ID: 38150692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.
    Vassilev-Galindo V; Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(9):094119. PubMed ID: 33685131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
    Hajibabaei A; Umer M; Anand R; Ha M; Kim KS
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural network potential based on pairwise resolved atomic forces and energies.
    Kalayan J; Ramzan I; Williams CD; Bryce RA; Burton NA
    J Comput Chem; 2024 May; 45(14):1143-1151. PubMed ID: 38284556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures.
    Zeng C; Chen X; Peterson AA
    J Chem Phys; 2022 Feb; 156(6):064104. PubMed ID: 35168344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beam induced heating in electron microscopy modeled with machine learning interatomic potentials.
    Nuñez Valencia C; Lomholdt WB; Leth Larsen MH; Hansen TW; Schiøtz J
    Nanoscale; 2024 Mar; 16(11):5750-5759. PubMed ID: 38411198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces.
    Sauceda HE; Chmiela S; Poltavsky I; Müller KR; Tkatchenko A
    J Chem Phys; 2019 Mar; 150(11):114102. PubMed ID: 30901990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator.
    Choi YJ; Jhi SH
    J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training.
    López-Zorrilla J; Aretxabaleta XM; Yeu IW; Etxebarria I; Manzano H; Artrith N
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37096855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning.
    Novikov IS; Suleimanov YV; Shapeev AV
    Phys Chem Chem Phys; 2018 Nov; 20(46):29503-29512. PubMed ID: 30457606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating Minimal Training Sets for Machine Learned Potentials.
    Finkbeiner J; Tovey S; Holm C
    Phys Rev Lett; 2024 Apr; 132(16):167301. PubMed ID: 38701485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials.
    Williams CD; Kalayan J; Burton NA; Bryce RA
    Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.