These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35317648)
1. Emergence of lump-like solitonic waves in Heimburg-Jackson biomembranes and nerves fractal model. El-Nabulsi RA J R Soc Interface; 2022 Mar; 19(188):20220079. PubMed ID: 35317648 [TBL] [Abstract][Full Text] [Related]
2. Multiwaves, breathers, lump and other solutions for the Heimburg model in biomembranes and nerves. Ozsahin DU; Ceesay B; Baber MZ; Ahmed N; Raza A; Rafiq M; Ahmad H; Awwad FA; Ismail EAA Sci Rep; 2024 May; 14(1):10180. PubMed ID: 38702384 [TBL] [Abstract][Full Text] [Related]
3. Fractal Pennes and Cattaneo-Vernotte bioheat equations from product-like fractal geometry and their implications on cells in the presence of tumour growth. El-Nabulsi RA J R Soc Interface; 2021 Sep; 18(182):20210564. PubMed ID: 34465211 [TBL] [Abstract][Full Text] [Related]
4. Periodic soliton trains and informational code structures in an improved soliton model for biomembranes and nerves. Fongang Achu G; Mkam Tchouobiap SE; Moukam Kakmeni FM; Tchawoua C Phys Rev E; 2018 Aug; 98(2-1):022216. PubMed ID: 30253549 [TBL] [Abstract][Full Text] [Related]
5. Solitons and lumps in the cylindrical Kadomtsev-Petviashvili equation. I. Axisymmetric solitons and their stability. Hu W; Zhang Z; Guo Q; Stepanyants Y Chaos; 2024 Jan; 34(1):. PubMed ID: 38271629 [TBL] [Abstract][Full Text] [Related]
6. Foam drainage equation in fractal dimensions: breaking and instabilities. El-Nabulsi RA; Anukool W Eur Phys J E Soft Matter; 2023 Nov; 46(11):110. PubMed ID: 37955737 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of soliton interaction solutions of the Davey-Stewartson I equation. Guo L; Chen L; Mihalache D; He J Phys Rev E; 2022 Jan; 105(1-1):014218. PubMed ID: 35193316 [TBL] [Abstract][Full Text] [Related]
8. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Kundu A; Mukherjee A; Naskar T Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130576. PubMed ID: 24711719 [TBL] [Abstract][Full Text] [Related]
10. Solitons in the Heimburg-Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane. Drab M; Daniel M; Kralj-Iglič V; Iglič A Eur Phys J E Soft Matter; 2022 Sep; 45(9):79. PubMed ID: 36125628 [TBL] [Abstract][Full Text] [Related]
11. Solitons and lumps in the cylindrical Kadomtsev-Petviashvili equation. II. Lumps and their interactions. Zhang Z; Hu W; Guo Q; Stepanyants Y Chaos; 2024 Jan; 34(1):. PubMed ID: 38252780 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of a differential-difference integrable (2+1)-dimensional system. Yu GF; Xu ZW Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062902. PubMed ID: 26172767 [TBL] [Abstract][Full Text] [Related]
13. Gramian solutions and soliton interactions for a generalized (3 + 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in a plasma or fluid. Chen SS; Tian B Proc Math Phys Eng Sci; 2019 Aug; 475(2228):20190122. PubMed ID: 31534421 [TBL] [Abstract][Full Text] [Related]
14. The modified extended tanh technique ruled to exploration of soliton solutions and fractional effects to the time fractional couple Drinfel'd-Sokolov-Wilson equation. Bashar MH; Mawa HZ; Biswas A; Rahman MM; Roshid MM; Islam J Heliyon; 2023 May; 9(5):e15662. PubMed ID: 37215912 [TBL] [Abstract][Full Text] [Related]
15. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain. Hahn K; Massopust PR; Prigarin S BMC Bioinformatics; 2016 Feb; 17():87. PubMed ID: 26873589 [TBL] [Abstract][Full Text] [Related]
16. On mathematical modelling of solitary pulses in cylindrical biomembranes. Engelbrecht J; Tamm K; Peets T Biomech Model Mechanobiol; 2015 Jan; 14(1):159-67. PubMed ID: 24848645 [TBL] [Abstract][Full Text] [Related]
17. Fractal fractional model for tuberculosis: existence and numerical solutions. Khan A; Shah K; Abdeljawad T; Amacha I Sci Rep; 2024 May; 14(1):12211. PubMed ID: 38806568 [TBL] [Abstract][Full Text] [Related]
18. Use of fractal theory in neuroscience: methods, advantages, and potential problems. Fernández E; Jelinek HF Methods; 2001 Aug; 24(4):309-21. PubMed ID: 11465996 [TBL] [Abstract][Full Text] [Related]
19. Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero-Bogoyavlenskii-Schiff equation. Roshid HO; Khan MH; Wazwaz AM Heliyon; 2020 Apr; 6(4):e03701. PubMed ID: 32322710 [TBL] [Abstract][Full Text] [Related]
20. Neurons and fractals: how reliable and useful are calculations of fractal dimensions? Jelinek HF; Fernandez E J Neurosci Methods; 1998 Jun; 81(1-2):9-18. PubMed ID: 9696304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]