These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35317722)

  • 1. Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation.
    Stapor K; Kotowski K; Smolarczyk T; Roterman I
    BMC Bioinformatics; 2022 Mar; 23(1):100. PubMed ID: 35317722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional ProteinUnetLM competitive with long short-term memory-based protein secondary structure predictors.
    Kotowski K; Fabian P; Roterman I; Stapor K
    Proteins; 2023 May; 91(5):608-618. PubMed ID: 36448315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAINT: self-attention augmented inception-inside-inception network improves protein secondary structure prediction.
    Uddin MR; Mahbub S; Rahman MS; Bayzid MS
    Bioinformatics; 2020 Nov; 36(17):4599-4608. PubMed ID: 32437517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.
    Suresh V; Parthasarathy S
    Protein Pept Lett; 2014; 21(8):736-42. PubMed ID: 23855661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.
    Wang S; Peng J; Ma J; Xu J
    Sci Rep; 2016 Jan; 6():18962. PubMed ID: 26752681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real value prediction of protein solvent accessibility using enhanced PSSM features.
    Chang DT; Huang HY; Syu YT; Wu CP
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S12. PubMed ID: 19091011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction.
    Green JR; Korenberg MJ; Aboul-Magd MO
    BMC Bioinformatics; 2009 Jul; 10():222. PubMed ID: 19615046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2018 May; 86(5):592-598. PubMed ID: 29492997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate contact predictions using covariation techniques and machine learning.
    Kosciolek T; Jones DT
    Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):145-51. PubMed ID: 26205532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A secondary structure-based position-specific scoring matrix applied to the improvement in protein secondary structure prediction.
    Chen TR; Juan SH; Huang YW; Lin YC; Lo WC
    PLoS One; 2021; 16(7):e0255076. PubMed ID: 34320027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPTool: A New Enhancing PSSM Tool for Protein Secondary Structure Prediction.
    Guo Y; Wu J; Ma H; Wang S; Huang J
    J Comput Biol; 2021 Apr; 28(4):362-364. PubMed ID: 33259717
    [No Abstract]   [Full Text] [Related]  

  • 15. Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction.
    Shapovalov M; Dunbrack RL; Vucetic S
    PLoS One; 2020; 15(5):e0232528. PubMed ID: 32374785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein structural classes for low-similarity sequences using reduced PSSM and position-based secondary structural features.
    Wang J; Wang C; Cao J; Liu X; Yao Y; Dai Q
    Gene; 2015 Jan; 554(2):241-8. PubMed ID: 25445293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
    Spencer M; Eickholt J; Jianlin Cheng
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):103-12. PubMed ID: 25750595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.