BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35317996)

  • 1. Structure-Function Studies of Two Yeast Homing Endonucleases that Evolved to Cleave Identical Targets with Dissimilar Rates and Specificities.
    Nawimanage RR; Yuan Z; Casares M; Joshi R; Lohman JR; Gimble FS
    J Mol Biol; 2022 May; 434(9):167550. PubMed ID: 35317996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity.
    Joshi R; Ho KK; Tenney K; Chen JH; Golden BL; Gimble FS
    J Mol Biol; 2011 Jan; 405(1):185-200. PubMed ID: 21029741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of homing endonuclease I-SceI with altered sequence specificity.
    Chen Z; Wen F; Sun N; Zhao H
    Protein Eng Des Sel; 2009 Apr; 22(4):249-56. PubMed ID: 19176595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution and substrate specificity profile of homing endonuclease I-SceI.
    Doyon JB; Pattanayak V; Meyer CB; Liu DR
    J Am Chem Soc; 2006 Feb; 128(7):2477-84. PubMed ID: 16478204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.
    Posey KL; Koufopanou V; Burt A; Gimble FS
    Nucleic Acids Res; 2004; 32(13):3947-56. PubMed ID: 15280510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system.
    Gimble FS; Moure CM; Posey KL
    J Mol Biol; 2003 Dec; 334(5):993-1008. PubMed ID: 14643662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity.
    Steuer S; Pingoud V; Pingoud A; Wende W
    Chembiochem; 2004 Feb; 5(2):206-13. PubMed ID: 14760742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity.
    Moure CM; Gimble FS; Quiocho FA
    J Mol Biol; 2003 Dec; 334(4):685-95. PubMed ID: 14636596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity.
    Niu Y; Tenney K; Li H; Gimble FS
    J Mol Biol; 2008 Sep; 382(1):188-202. PubMed ID: 18644379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of a type IIS restriction endonuclease with a long recognition sequence.
    Lippow SM; Aha PM; Parker MH; Blake WJ; Baynes BM; Lipovsek D
    Nucleic Acids Res; 2009 May; 37(9):3061-73. PubMed ID: 19304757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of I-SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway.
    Moure CM; Gimble FS; Quiocho FA
    Nucleic Acids Res; 2008 Jun; 36(10):3287-96. PubMed ID: 18424798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of HSP70 with endonucleases allows the expression of otherwise silent mutations.
    Mizumura H; Shibata T; Morishima N
    FEBS Lett; 2002 Jul; 522(1-3):177-82. PubMed ID: 12095641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.
    Gabsalilow L; Schierling B; Friedhoff P; Pingoud A; Wende W
    Nucleic Acids Res; 2013 Apr; 41(7):e83. PubMed ID: 23408850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein.
    Senejani AG; Gogarten JP
    Int J Biol Sci; 2007 Feb; 3(4):205-11. PubMed ID: 17389927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the I-SceI nuclease complexed with its dsDNA target and three catalytic metal ions.
    Prieto J; Redondo P; Merino N; Villate M; Montoya G; Blanco FJ; Molina R
    Acta Crystallogr F Struct Biol Commun; 2016 Jun; 72(Pt 6):473-9. PubMed ID: 27303901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases.
    Fonfara I; Curth U; Pingoud A; Wende W
    Nucleic Acids Res; 2012 Jan; 40(2):847-60. PubMed ID: 21965534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocross-linking of the homing endonuclease PI-SceI to its recognition sequence.
    Pingoud V; Thole H; Christ F; Grindl W; Wende W; Pingoud A
    J Biol Chem; 1999 Apr; 274(15):10235-43. PubMed ID: 10187809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly sensitive selection method for directed evolution of homing endonucleases.
    Chen Z; Zhao H
    Nucleic Acids Res; 2005 Oct; 33(18):e154. PubMed ID: 16214805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions.
    Perrin A; Buckle M; Dujon B
    EMBO J; 1993 Jul; 12(7):2939-47. PubMed ID: 8335007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing.
    Gimble FS; Wang J
    J Mol Biol; 1996 Oct; 263(2):163-80. PubMed ID: 8913299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.