BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35317998)

  • 1. Structural Dynamics of the C-terminal X Domain of Nipah and Hendra Viruses Controls the Attachment to the C-terminal Tail of the Nucleocapsid Protein.
    Bourhis JM; Yabukarski F; Communie G; Schneider R; Volchkova VA; Frénéat M; Gérard FC; Ducournau C; Mas C; Tarbouriech N; Ringkjøbing Jensen M; Volchkov VE; Blackledge M; Jamin M
    J Mol Biol; 2022 May; 434(10):167551. PubMed ID: 35317998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indiscriminate activities of different henipavirus polymerase complex proteins allow for efficient minigenome replication in hybrid systems.
    Li X; Yang Y; López CB
    J Virol; 2024 Jun; 98(6):e0050324. PubMed ID: 38780245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: evidence for an elongated coiled-coil homotrimer.
    Blocquel D; Beltrandi M; Erales J; Barbier P; Longhi S
    Virology; 2013 Nov; 446(1-2):162-72. PubMed ID: 24074578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site-directed spin labeling EPR spectroscopy.
    Martinho M; Habchi J; El Habre Z; Nesme L; Guigliarelli B; Belle V; Longhi S
    J Biomol Struct Dyn; 2013; 31(5):453-71. PubMed ID: 22881220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment.
    Habchi J; Longhi S
    Int J Mol Sci; 2015 Jul; 16(7):15688-726. PubMed ID: 26184170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies.
    Beltrandi M; Blocquel D; Erales J; Barbier P; Cavalli A; Longhi S
    Virology; 2015 Mar; 477():42-55. PubMed ID: 25637789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus.
    Communie G; Habchi J; Yabukarski F; Blocquel D; Schneider R; Tarbouriech N; Papageorgiou N; Ruigrok RW; Jamin M; Jensen MR; Longhi S; Blackledge M
    PLoS Pathog; 2013; 9(9):e1003631. PubMed ID: 24086133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.
    Bradel-Tretheway BG; Liu Q; Stone JA; McInally S; Aguilar HC
    J Virol; 2015 Jul; 89(14):7235-47. PubMed ID: 25948743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes.
    Bradel-Tretheway BG; Zamora JLR; Stone JA; Liu Q; Li J; Aguilar HC
    J Virol; 2019 Jul; 93(13):. PubMed ID: 30971473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection.
    Yun T; Park A; Hill TE; Pernet O; Beaty SM; Juelich TL; Smith JK; Zhang L; Wang YE; Vigant F; Gao J; Wu P; Lee B; Freiberg AN
    J Virol; 2015 Jan; 89(2):1242-53. PubMed ID: 25392218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the intrinsically disordered C-terminal domain of the nipah virus nucleoprotein and interaction with the x domain of the phosphoprotein as unveiled by NMR spectroscopy.
    Baronti L; Erales J; Habchi J; Felli IC; Pierattelli R; Longhi S
    Chembiochem; 2015 Jan; 16(2):268-76. PubMed ID: 25492314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular determinants of antiviral potency of paramyxovirus entry inhibitors.
    Porotto M; Carta P; Deng Y; Kellogg GE; Whitt M; Lu M; Mungall BA; Moscona A
    J Virol; 2007 Oct; 81(19):10567-74. PubMed ID: 17652384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded.
    Bourhis JM; Receveur-Bréchot V; Oglesbee M; Zhang X; Buccellato M; Darbon H; Canard B; Finet S; Longhi S
    Protein Sci; 2005 Aug; 14(8):1975-92. PubMed ID: 16046624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural disorder within paramyxoviral nucleoproteins.
    Longhi S
    FEBS Lett; 2015 Sep; 589(19 Pt A):2649-59. PubMed ID: 26071376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation.
    Sugai A; Sato H; Takayama I; Yoneda M; Kai C
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28835499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of nucleoprotein α-MoRE and XD interactions of Nipah and Hendra viruses.
    Shang X; Chu W; Chu X; Xu L; Longhi S; Wang J
    J Mol Model; 2018 Apr; 24(5):113. PubMed ID: 29691656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein.
    Johansson K; Bourhis JM; Campanacci V; Cambillau C; Canard B; Longhi S
    J Biol Chem; 2003 Nov; 278(45):44567-73. PubMed ID: 12944395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Henipavirus W Proteins Interact with 14-3-3 To Modulate Host Gene Expression.
    Edwards MR; Hoad M; Tsimbalyuk S; Menicucci AR; Messaoudi I; Forwood JK; Basler CF
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32321809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus.
    Bossart KN; Crameri G; Dimitrov AS; Mungall BA; Feng YR; Patch JR; Choudhary A; Wang LF; Eaton BT; Broder CC
    J Virol; 2005 Jun; 79(11):6690-702. PubMed ID: 15890907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicular Stomatitis Virus Phosphoprotein Dimerization Domain Is Dispensable for Virus Growth.
    Gérard FCA; Jamin M; Blackledge M; Blondel D; Bourhis JM
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31852780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.