BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35318113)

  • 1. Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics.
    Halabi A; Rincón E; Chamorro E
    Toxicol In Vitro; 2022 Jun; 81():105347. PubMed ID: 35318113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs.
    Song F; Zhang A; Liang H; Cui L; Li W; Si H; Duan Y; Zhai H
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27854309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model.
    Franke R; Gruska A; Giuliani A; Benigni R
    Carcinogenesis; 2001 Sep; 22(9):1561-71. PubMed ID: 11532881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSARs of aromatic amines: identification of potent carcinogens.
    Franke R; Gruska A; Bossa C; Benigni R
    Mutat Res; 2010 Sep; 691(1-2):27-40. PubMed ID: 20600167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.
    Benigni R; Passerini L
    Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic QSAR of aromatic amines: new models for discriminating between homocyclic mutagens and nonmutagens, and validation of models for carcinogens.
    Benigni R; Bossa C; Netzeva T; Rodomonte A; Tsakovska I
    Environ Mol Mutagen; 2007 Dec; 48(9):754-71. PubMed ID: 18008355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB.
    Wan WX; Chen Y; Zhang J; Shen F; Luo L; Deng SH; Xiao H; Zhou W; Deng OP; Yang H; Xiao YL; Huang CR; Tian D; He JS; Wang YJ
    Toxicol In Vitro; 2019 Aug; 58():13-25. PubMed ID: 30878698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural motifs modulating the carcinogenic risk of aromatic amines.
    Benigni R; Worth A; Netzeva T; Jeliazkova N; Bossa C; Gruska A; Franke R
    Environ Mol Mutagen; 2009 Mar; 50(2):152-61. PubMed ID: 19152383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable selection by an evolution algorithm using modified Cp based on MLR and PLS modeling: QSAR studies of carcinogenicity of aromatic amines.
    Shen Q; Jiang JH; Shen GL; Yu RQ
    Anal Bioanal Chem; 2003 Jan; 375(2):248-54. PubMed ID: 12560968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinogenic carbocyclic and heterocyclic aromatic amines: a DFT study concerning their mutagenic potency.
    Borosky GL
    J Mol Graph Model; 2008 Nov; 27(4):459-65. PubMed ID: 18799337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultimate carcinogenic metabolites from aromatic and heterocyclic aromatic amines: a computational study in relation to their mutagenic potency.
    Borosky GL
    Chem Res Toxicol; 2007 Feb; 20(2):171-80. PubMed ID: 17261035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative correlation of mutagenic and carcinogenic potencies for heterocyclic amines from cooked foods and additional aromatic amines.
    Hatch FT; Knize MG; Moore DH; Felton JS
    Mutat Res; 1992 Jun; 271(3):269-87. PubMed ID: 1378200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-chemical studies on mutagenicity of aromatic and heteroaromatic amines.
    Borosky GL
    Front Biosci (Schol Ed); 2013 Jan; 5(2):600-10. PubMed ID: 23277072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carcinogenic ranking of aromatic amines and nitro compounds.
    Crabtree HC; Hart D; Thomas MC; Witham BH; McKenzie IG; Smith CP
    Mutat Res; 1991 Dec; 264(4):155-62. PubMed ID: 1723492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted structure-activity studies of chemical carcinogens. Aromatic amines.
    Yuta K; Jurs PC
    J Med Chem; 1981 Mar; 24(3):241-51. PubMed ID: 7265110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity considerations in risk assessment: a simulation study.
    Lavenhar SR; Maczka CA
    Toxicol Ind Health; 1985 Dec; 1(4):249-59. PubMed ID: 3843505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines.
    Brockstedt U; Uzarowska A; Montpetit A; Pfau W; Labuda D
    Biochem Biophys Res Commun; 2004 Jan; 313(4):1004-8. PubMed ID: 14706642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative explanation on structure-carcinogenic activity relationship of aromatic amines by di-region theory.
    Dai QH; Zheng QY; Wang ZY
    Sci China B; 1991 May; 34(5):547-59. PubMed ID: 2059321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines.
    Kuhnke L; Ter Laak A; Göller AH
    J Chem Inf Model; 2019 Feb; 59(2):668-672. PubMed ID: 30694664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.