BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35318113)

  • 21. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines.
    Kuhnke L; Ter Laak A; Göller AH
    J Chem Inf Model; 2019 Feb; 59(2):668-672. PubMed ID: 30694664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.
    Mattioni BE; Kauffman GW; Jurs PC; Custer LL; Durham SK; Pearl GM
    J Chem Inf Comput Sci; 2003; 43(3):949-63. PubMed ID: 12767154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative structure-activity relationship investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test: 2. Mutagenicity of aromatic and heteroaromatic nitro compounds in Salmonella Typhimurium TA100.
    Debnath AK; Lopez de Compadre RL; Shusterman AJ; Hansch C
    Environ Mol Mutagen; 1992; 19(1):53-70. PubMed ID: 1732104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of aromatic amines mutagenicity from theoretical molecular descriptors.
    Gramatica P; Consonni V; Pavan M
    SAR QSAR Environ Res; 2003 Aug; 14(4):237-50. PubMed ID: 14506868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Fisher discriminant analysis for carcinogenic potency of aromatic amines].
    Zhu Y; Yu Y; Chen X
    Zhonghua Yu Fang Yi Xue Za Zhi; 1999 Jan; 33(1):21-5. PubMed ID: 11864450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations of nitrenium ion selectivities with quantitative mutagenicity and carcinogenicity of the corresponding amines.
    Novak M; Rajagopal S
    Chem Res Toxicol; 2002 Dec; 15(12):1495-503. PubMed ID: 12482231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extended quantitative structure-activity relationships for 80 aromatic and heterocyclic amines: structural, electronic, and hydropathic factors affecting mutagenic potency.
    Hatch FT; Knize MG; Colvin ME
    Environ Mol Mutagen; 2001; 38(4):268-91. PubMed ID: 11774358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSAR modelling for mutagenic potency of heteroaromatic amines by optimal SMILES-based descriptors.
    Toropov AA; Toropova AP; Benfenati E
    Chem Biol Drug Des; 2009 Mar; 73(3):301-12. PubMed ID: 19207466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting mutagenicity of aromatic amines by various machine learning approaches.
    Leong MK; Lin SW; Chen HB; Tsai FY
    Toxicol Sci; 2010 Aug; 116(2):498-513. PubMed ID: 20507879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency.
    Venkatapathy R; Wang CY; Bruce RM; Moudgal C
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices.
    Cash GG; Anderson B; Mayo K; Bogaczyk S; Tunkel J
    Mutat Res; 2005 Aug; 585(1-2):170-83. PubMed ID: 15961341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum chemical studies on ultimate carcinogenic metabolites from polycyclic aromatic hydrocarbons.
    Borosky GL
    Curr Med Chem; 2008; 15(28):2901-20. PubMed ID: 19075643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of cytochrome P450 isoforms by carcinogenic aromatic amines and carcinogenic susceptibility of rodent animals.
    Hashimoto Y; Degawa M
    Pharmacogenetics; 1995; 5 Spec No():S80-3. PubMed ID: 7581495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency.
    Wang NC; Venkatapathy R; Bruce RM; Moudgal C
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical structural descriptors and mutagenicity assessment: a study with congeneric and diverse datasets
    Majumdar S; Basak SC; Lungu CN; Diudea MV; Grunwald GD
    SAR QSAR Environ Res; 2018 Aug; 29(8):579-590. PubMed ID: 30025481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway.
    Liu Y; Li X; Pu Q; Fu R; Wang Z; Li Y; Li X
    J Hazard Mater; 2023 Jul; 454():131541. PubMed ID: 37146326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QSAR study of liver specificity of carcinogenicity of N-nitroso compounds.
    Yuan J; Pu Y; Yin L
    Ecotoxicol Environ Saf; 2012 Oct; 84():282-92. PubMed ID: 22910279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Intrinsic Dimensionality of Chemical Spaces for Robust QSAR Model Development: A Comparison of Several Statistical Approaches.
    Majumdar S; Basak SC
    Curr Comput Aided Drug Des; 2016; 12(4):294-301. PubMed ID: 27600878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of classification and regression based QSAR models to predict rodent carcinogenic potency using oral slope factor.
    Kar S; Deeb O; Roy K
    Ecotoxicol Environ Saf; 2012 Aug; 82():85-95. PubMed ID: 22698880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines.
    Bull RJ; Reckhow DA; Li X; Humpage AR; Joll C; Hrudey SE
    Toxicology; 2011 Aug; 286(1-3):1-19. PubMed ID: 21605618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.