These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
3. A hybrid clinical-research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons. Technical note. Howard MA; Volkov IO; Granner MA; Damasio HM; Ollendieck MC; Bakken HE J Neurosurg; 1996 Jan; 84(1):129-32. PubMed ID: 8613821 [TBL] [Abstract][Full Text] [Related]
6. Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. Zhong C; Zhang Y; He W; Wei P; Lu Y; Zhu Y; Liu L; Wang L J Neurosci Methods; 2014 Jan; 222():218-29. PubMed ID: 24286699 [TBL] [Abstract][Full Text] [Related]
7. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Bower MR; Stead M; Meyer FB; Marsh WR; Worrell GA Epilepsia; 2012 May; 53(5):807-16. PubMed ID: 22352423 [TBL] [Abstract][Full Text] [Related]
9. Potential for unreliable interpretation of EEG recorded with microelectrodes. Stacey WC; Kellis S; Greger B; Butson CR; Patel PR; Assaf T; Mihaylova T; Glynn S Epilepsia; 2013 Aug; 54(8):1391-401. PubMed ID: 23647099 [TBL] [Abstract][Full Text] [Related]
10. Theoretical analysis of intracortical microelectrode recordings. Lempka SF; Johnson MD; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC J Neural Eng; 2011 Aug; 8(4):045006. PubMed ID: 21775783 [TBL] [Abstract][Full Text] [Related]
11. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
12. Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. Misra A; Burke JF; Ramayya AG; Jacobs J; Sperling MR; Moxon KA; Kahana MJ; Evans JJ; Sharan AD J Neural Eng; 2014 Apr; 11(2):026013. PubMed ID: 24608589 [TBL] [Abstract][Full Text] [Related]
13. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
14. Improving Fast Ripples Recording With Model-Guided Design of Microelectrodes. Al Harrach M; Dauly G; Seyedeh-Mousavi H; Dieuset G; Benquet P; Ismailova E; Wendling F IEEE Trans Biomed Eng; 2023 Aug; 70(8):2496-2505. PubMed ID: 37028076 [TBL] [Abstract][Full Text] [Related]
15. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Akamine IR; Garich JV; Gulick DW; Hara SA; Benscoter MA; Kuehn ST; Worrell GA; Raupp GB; Blain Christen JM Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38744259 [No Abstract] [Full Text] [Related]
16. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites. Pothof F; Bonini L; Lanzilotto M; Livi A; Fogassi L; Orban GA; Paul O; Ruther P J Neural Eng; 2016 Aug; 13(4):046006. PubMed ID: 27247248 [TBL] [Abstract][Full Text] [Related]
17. A simultaneous optical and electrical in-vitro neuronal recording system to evaluate microelectrode performance. Aqrawe Z; Patel N; Vyas Y; Bansal M; Montgomery J; Travas-Sejdic J; Svirskis D PLoS One; 2020; 15(8):e0237709. PubMed ID: 32817653 [TBL] [Abstract][Full Text] [Related]
18. Microelectrode recordings in human epilepsy: a case for clinical translation. Chari A; Thornton RC; Tisdall MM; Scott RC Brain Commun; 2020; 2(2):fcaa082. PubMed ID: 32954332 [TBL] [Abstract][Full Text] [Related]
20. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. Ludwig KA; Miriani RM; Langhals NB; Joseph MD; Anderson DJ; Kipke DR J Neurophysiol; 2009 Mar; 101(3):1679-89. PubMed ID: 19109453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]