These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35318314)

  • 1. Amontons-Coulomb-like slip dynamics in acousto-microfluidics.
    Quelennec A; Gorman JJ; Reyes DR
    Nat Commun; 2022 Mar; 13(1):1429. PubMed ID: 35318314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Microfluidics.
    Zhang P; Bachman H; Ozcelik A; Huang TJ
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):17-43. PubMed ID: 32531185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface acoustic wave manipulation of bioparticles.
    Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W
    Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic valves in microfluidic channels for droplet manipulation.
    Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D
    Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acoustic mechanics of stick slip friction in the California spiny lobster (Panulirus interruptus).
    Patek SN; Baio JE
    J Exp Biol; 2007 Oct; 210(Pt 20):3538-46. PubMed ID: 17921155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface acoustic wave microfluidics.
    Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ
    Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubbles in microfluidics: an all-purpose tool for micromanipulation.
    Li Y; Liu X; Huang Q; Ohta AT; Arai T
    Lab Chip; 2021 Mar; 21(6):1016-1035. PubMed ID: 33538756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications.
    Connacher W; Zhang N; Huang A; Mei J; Zhang S; Gopesh T; Friend J
    Lab Chip; 2018 Jul; 18(14):1952-1996. PubMed ID: 29922774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidic platforms for particle manipulation.
    Novotny J; Lenshof A; Laurell T
    Electrophoresis; 2022 Apr; 43(7-8):804-818. PubMed ID: 34719049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stick-slip instabilities in sheared granular flow: The role of friction and acoustic vibrations.
    Lieou CK; Elbanna AE; Langer JS; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022209. PubMed ID: 26382396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.