These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35318335)

  • 1. A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging.
    Sità L; Brondi M; Lagomarsino de Leon Roig P; Curreli S; Panniello M; Vecchia D; Fellin T
    Nat Commun; 2022 Mar; 13(1):1529. PubMed ID: 35318335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.
    Soltanian-Zadeh S; Sahingur K; Blau S; Gong Y; Farsiu S
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8554-8563. PubMed ID: 30975747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASTRA: a deep learning algorithm for fast semantic segmentation of large-scale astrocytic networks.
    Bonato J; Curreli S; Romanzi S; Panzeri S; Fellin T
    bioRxiv; 2023 May; ():. PubMed ID: 37205519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online analysis of microendoscopic 1-photon calcium imaging data streams.
    Friedrich J; Giovannucci A; Pnevmatikakis EA
    PLoS Comput Biol; 2021 Jan; 17(1):e1008565. PubMed ID: 33507937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks.
    Khalili N; Turk E; Benders MJNL; Moeskops P; Claessens NHP; de Heus R; Franx A; Wagenaar N; Breur JMPJ; Viergever MA; Išgum I
    Neuroimage Clin; 2019; 24():102061. PubMed ID: 31835284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based object tracking for 3D microstructure reconstruction.
    Ma B; Xu Y; Chen J; Puquan P; Ban X; Wang H; Xue W
    Methods; 2022 Aug; 204():172-178. PubMed ID: 35413441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network.
    Zeng W; Luo J; Cheng J; Lu Y
    Med Phys; 2022 Aug; 49(8):5081-5092. PubMed ID: 35536111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Convolutional DenseNets for Segmentation of Microvessels in Two-photon Microscopy.
    Damseh R; Cheriet F; Lesage F
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():661-665. PubMed ID: 30440483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NeuroSeg-II: A deep learning approach for generalized neuron segmentation in two-photon Ca
    Xu Z; Wu Y; Guan J; Liang S; Pan J; Wang M; Hu Q; Jia H; Chen X; Liao X
    Front Cell Neurosci; 2023; 17():1127847. PubMed ID: 37091918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
    Isensee F; Jaeger PF; Kohl SAA; Petersen J; Maier-Hein KH
    Nat Methods; 2021 Feb; 18(2):203-211. PubMed ID: 33288961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets.
    Shen SP; Tseng HA; Hansen KR; Wu R; Gritton HJ; Si J; Han X
    eNeuro; 2018; 5(5):. PubMed ID: 30221189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.
    Andresen J; Kepp T; Ehrhardt J; Burchard CV; Roider J; Handels H
    Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):699-710. PubMed ID: 35239133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic fetal biometry prediction using a novel deep convolutional network architecture.
    Ghelich Oghli M; Shabanzadeh A; Moradi S; Sirjani N; Gerami R; Ghaderi P; Sanei Taheri M; Shiri I; Arabi H; Zaidi H
    Phys Med; 2021 Aug; 88():127-137. PubMed ID: 34242884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.