BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35319869)

  • 1. Structural Variation of Precipitates Formed by Fe(II) Oxidation and Impact on the Retention of Phosphate.
    Li X; Graham NJD; Deng W; Liu M; Liu T; Yu W
    Environ Sci Technol; 2022 Apr; 56(7):4345-4355. PubMed ID: 35319869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging.
    Senn AC; Hug SJ; Kaegi R; Hering JG; Voegelin A
    Water Res; 2018 Mar; 131():334-345. PubMed ID: 29306667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of planar crystalline flocs of γ-FeOOH in Fe(II) coagulation and the influence of humic acid.
    Li X; Graham NJD; Deng W; Liu M; Liu T; Yu W
    Water Res; 2020 Oct; 185():116250. PubMed ID: 32763528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J
    Environ Sci Technol; 2011 Jun; 45(11):4726-32. PubMed ID: 21557572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Level Structural Differences between Fe(III) Coprecipitates Generated by the Addition of Fe(III) Coagulants and by the Oxidation of Fe(II) Coagulants Determine Their Coagulation Behavior in Phosphate and DOM Removal.
    Yang B; Graham N; Liu P; Liu M; Gregory J; Yu W
    Environ Sci Technol; 2023 Aug; 57(33):12489-12500. PubMed ID: 37551789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
    Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM
    Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Fe and Mn bearing precipitates generated by Fe(II) and Mn(II) co-oxidation with O
    Ahmad A; van der Wal A; Bhattacharya P; van Genuchten CM
    Water Res; 2019 Sep; 161():505-516. PubMed ID: 31229731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive dissolution of As(V)-bearing Fe(III)-precipitates formed by Fe(II) oxidation in aqueous solutions.
    Voegelin A; Senn AC; Kaegi R; Hug SJ
    Geochem Trans; 2019 Mar; 20(1):2. PubMed ID: 30903325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.
    Azam HM; Finneran KT
    Chemosphere; 2014 Feb; 97():1-9. PubMed ID: 24210595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel calcium peroxide/attapulgite-Fe(II) process for high concentration phosphate removal and recovery: Efficiency and mechanism.
    Luo J; Peng J; Zhong Z; Long X; Yang J; Li R; Wan J
    J Environ Manage; 2023 Oct; 343():118166. PubMed ID: 37229855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse performances for Pb(II) adsorption by in situ formed Fe(III) oxyhydroxide derived from ferrate(VI) reduction and ferrous oxidation.
    Lan B; Hao C; Zhang M; Yan X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77488-77498. PubMed ID: 37256407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation.
    Arienzo M; Adamo P; Chiarenzelli J; Bianco MR; De Martino A
    Chemosphere; 2002 Sep; 48(10):1009-18. PubMed ID: 12227505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous elimination and detoxification of arsenite in the presence of micromolar hydrogen peroxide and ferrous and its environmental implications.
    Ma Y; Yang C; Shi Y; Liu Z; Cao W; Wen Q; Qin Y
    Ecotoxicol Environ Saf; 2023 Jan; 249():114435. PubMed ID: 38321657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coprecipitation of Phosphate and Silicate Affects Environmental Iron (Oxyhydr)Oxide Transformations: A Gel-Based Diffusive Sampler Approach.
    Kraal P; van Genuchten CM; Lenstra WK; Behrends T
    Environ Sci Technol; 2020 Oct; 54(19):12795-12802. PubMed ID: 32885962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coprecipitation of arsenate with metal oxides: nature, mineralogy, and reactivity of aluminum precipitates.
    Violante A; Ricciardella M; Del Gaudio S; Pigna M
    Environ Sci Technol; 2006 Aug; 40(16):4961-7. PubMed ID: 16955893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.
    Gao J; Xing F; Bai Y; Zhu S
    Dalton Trans; 2014 Jun; 43(21):7964-78. PubMed ID: 24715002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mn(II) Oxidation in Fenton and Fenton Type Systems: Identification of Reaction Efficiency and Reaction Products.
    van Genuchten CM; Peña J
    Environ Sci Technol; 2017 Mar; 51(5):2982-2991. PubMed ID: 28135801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.