These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35319995)

  • 1. Oxidized primary arc magmas: Constraints from Cu/Zr systematics in global arc volcanics.
    Zhao SY; Yang AY; Langmuir CH; Zhao TP
    Sci Adv; 2022 Mar; 8(12):eabk0718. PubMed ID: 35319995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper systematics in arc magmas and implications for crust-mantle differentiation.
    Lee CT; Luffi P; Chin EJ; Bouchet R; Dasgupta R; Morton DM; Le Roux V; Yin QZ; Jin D
    Science; 2012 Apr; 336(6077):64-8. PubMed ID: 22491850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga.
    Meng X; Kleinsasser JM; Richards JP; Tapster SR; Jugo PJ; Simon AC; Kontak DJ; Robb L; Bybee GM; Marsh JH; Stern RA
    Nat Commun; 2021 Apr; 12(1):2189. PubMed ID: 33850122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox state of arc mantle using Zn/Fe systematics.
    Lee CT; Luffi P; Le Roux V; Dasgupta R; Albaréde F; Leeman WP
    Nature; 2010 Dec; 468(7324):681-5. PubMed ID: 21124454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment.
    Chen C; Lee CA; Tang M; Biddle K; Sun W
    Nat Commun; 2020 Oct; 11(1):5313. PubMed ID: 33082330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox "filter" beneath magmatic orogens and the formation of continental crust.
    Tang M; Erdman M; Eldridge G; Lee CA
    Sci Adv; 2018 May; 4(5):eaar4444. PubMed ID: 29774235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-sulfur-rich, oxidised adakite magmas are likely porphyry copper progenitors.
    Leong TSJ; Mavrogenes JA; Arculus RJ
    Sci Rep; 2023 Mar; 13(1):5078. PubMed ID: 36977810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magmatic Response to Subduction Initiation: Part 1. Fore-arc Basalts of the Izu-Bonin Arc From IODP Expedition 352.
    Shervais JW; Reagan M; Haugen E; Almeev RR; Pearce JA; Prytulak J; Ryan JG; Whattam SA; Godard M; Chapman T; Li H; Kurz W; Nelson WR; Heaton D; Kirchenbaur M; Shimizu K; Sakuyama T; Li Y; Vetter SK
    Geochem Geophys Geosyst; 2019 Jan; 20(1):314-338. PubMed ID: 30853858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of Archean upper mantle caused by crustal recycling.
    Gao L; Liu S; Cawood PA; Hu F; Wang J; Sun G; Hu Y
    Nat Commun; 2022 Jun; 13(1):3283. PubMed ID: 35672309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A subduction influence on ocean ridge basalts outside the Pacific subduction shield.
    Yang AY; Langmuir CH; Cai Y; Michael P; Goldstein SL; Chen Z
    Nat Commun; 2021 Aug; 12(1):4757. PubMed ID: 34362917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide resorption during crustal ascent and degassing of oceanic plateau basalts.
    Reekie CDJ; Jenner FE; Smythe DJ; Hauri EH; Bullock ES; Williams HM
    Nat Commun; 2019 Jan; 10(1):82. PubMed ID: 30622301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.
    Brounce M; Stolper E; Eiler J
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):8997-9002. PubMed ID: 28784788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas.
    Bénard A; Klimm K; Woodland AB; Arculus RJ; Wilke M; Botcharnikov RE; Shimizu N; Nebel O; Rivard C; Ionov DA
    Nat Commun; 2018 Aug; 9(1):3500. PubMed ID: 30158630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arc magmas oxidised by water dissociation and hydrogen incorporation in orthopyroxene.
    Tollan P; Hermann J
    Nat Geosci; 2019 Jun; 12(8):667-671. PubMed ID: 31372181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subducting serpentinites release reduced, not oxidized, aqueous fluids.
    Piccoli F; Hermann J; Pettke T; Connolly JAD; Kempf ED; Vieira Duarte JF
    Sci Rep; 2019 Dec; 9(1):19573. PubMed ID: 31862932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major and trace element compositions of basaltic lavas from western margin of central main Ethiopian rift: enriched asthenosphere vs. mantle plume contribution.
    Meshesha D; Chekol T; Negussia S
    Heliyon; 2021 Dec; 7(12):e08634. PubMed ID: 35005282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing effects of spreading rate, crystal fractionation and source variability on Fe isotope systematics in mid-ocean ridge lavas.
    Richter M; Nebel O; Schwindinger M; Nebel-Jacobsen Y; Dick HJB
    Sci Rep; 2021 Feb; 11(1):4123. PubMed ID: 33603040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting crustal production and rapid mantle transitions beneath back-arc ridges.
    Dunn RA; Martinez F
    Nature; 2011 Jan; 469(7329):198-202. PubMed ID: 21228874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge.
    Codillo EA; Le Roux V; Marschall HR
    Nat Commun; 2018 Jul; 9(1):2864. PubMed ID: 30030428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle.
    Zhang Y; Gazel E; Gaetani GA; Klein F
    Sci Adv; 2021 Nov; 7(48):eabj2515. PubMed ID: 34826248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.