BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35320267)

  • 1. Analysis of transcribed sequences from young and mature zebrafish thrombocytes.
    Fallatah W; De R; Burks D; Azad RK; Jagadeeswaran P
    PLoS One; 2022; 17(3):e0264776. PubMed ID: 35320267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of seven hox genes in zebrafish thrombopoiesis.
    Sundaramoorthi H; Fallatah W; Mary J; Jagadeeswaran P
    Blood Cells Mol Dis; 2024 Jan; 104():102796. PubMed ID: 37717409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation.
    Jagadeeswaran P; Lin S; Weinstein B; Hutson A; Kim S
    Blood Cells Mol Dis; 2010 Mar; 44(3):175-80. PubMed ID: 20110178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of young and mature thrombocytes by a novel immuno-selection method.
    Kulkarni V; Kim S; Zafreen L; Jagadeeswaran P
    Blood Cells Mol Dis; 2012 Mar; 48(3):183-7. PubMed ID: 22297253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish.
    Rost MS; Shestopalov I; Liu Y; Vo AH; Richter CE; Emly SM; Barrett FG; Stachura DL; Holinstat M; Zon LI; Shavit JA
    Blood Adv; 2018 Dec; 2(23):3418-3427. PubMed ID: 30504234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microRNAs and their downstream target transcription factors in zebrafish thrombopoiesis.
    Al Qaryoute A; Fallatah W; Dhinoja S; Raman R; Jagadeeswaran P
    Sci Rep; 2023 Sep; 13(1):16066. PubMed ID: 37752184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraflagellar transport proteins are involved in thrombocyte filopodia formation and secretion.
    Radhakrishnan U; Alsrhani A; Sundaramoorthi H; Khandekar G; Kashyap M; Fuchs JL; Perkins BD; Omori Y; Jagadeeswaran P
    Platelets; 2018 Dec; 29(8):811-820. PubMed ID: 29125377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockdown of αIIb by RNA degradation by delivering deoxyoligonucleotides piggybacked with control vivo-morpholinos into zebrafish thrombocytes.
    Sundaramoorthi H; Khandekar G; Kim S; Jagadeeswaran P
    Blood Cells Mol Dis; 2015 Jan; 54(1):78-83. PubMed ID: 25135204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vivo-Morpholino knockdown of alphaIIb: A novel approach to inhibit thrombocyte function in adult zebrafish.
    Kim S; Radhakrishnan UP; Rajpurohit SK; Kulkarni V; Jagadeeswaran P
    Blood Cells Mol Dis; 2010 Mar; 44(3):169-74. PubMed ID: 20045356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of MicroRNAs and their Downstream Target Transcription Factors in Zebrafish Thrombopoiesis.
    Qaryoute AA; Fallatah W; Dhinoja S; Raman R; Jagadeeswaran P
    Res Sq; 2023 Apr; ():. PubMed ID: 37162944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective labeling of zebrafish thrombocytes: quantitation of thrombocyte function and detection during development.
    Gregory M; Jagadeeswaran P
    Blood Cells Mol Dis; 2002; 28(3):418-27. PubMed ID: 12367586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis.
    Kim S; Carrillo M; Radhakrishnan UP; Jagadeeswaran P
    Blood Cells Mol Dis; 2012 Mar; 48(3):188-96. PubMed ID: 22306208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of transgenic zebrafish with 2 populations of RFP- and GFP-labeled thrombocytes: analysis of their lipids.
    Fallatah W; De Silva IW; Verbeck GF; Jagadeeswaran P
    Blood Adv; 2019 May; 3(9):1406-1415. PubMed ID: 31053568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish.
    Lin HF; Traver D; Zhu H; Dooley K; Paw BH; Zon LI; Handin RI
    Blood; 2005 Dec; 106(12):3803-10. PubMed ID: 16099879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mlck1a is expressed in zebrafish thrombocytes and is an essential component of thrombus formation.
    Tournoij E; Weber GJ; Akkerman JW; de Groot PG; Zon LI; Moll FL; Schulte-Merker S
    J Thromb Haemost; 2010 Mar; 8(3):588-95. PubMed ID: 20002541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dioxin-induced thrombocyte aggregation in zebrafish.
    Kim S; Sundaramoorthi H; Jagadeeswaran P
    Blood Cells Mol Dis; 2015 Jan; 54(1):116-22. PubMed ID: 25129381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish thrombocytes: functions and origins.
    Khandekar G; Kim S; Jagadeeswaran P
    Adv Hematol; 2012; 2012():857058. PubMed ID: 22778746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young thrombocytes initiate the formation of arterial thrombi in zebrafish.
    Thattaliyath B; Cykowski M; Jagadeeswaran P
    Blood; 2005 Jul; 106(1):118-24. PubMed ID: 15769888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish thrombocyte aggregation by whole blood aggregometry and flow cytometry.
    Sundaramoorthi H; Panapakam R; Jagadeeswaran P
    Platelets; 2015; 26(7):613-9. PubMed ID: 25902147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of zebrafish thrombocytes.
    Jagadeeswaran P; Sheehan JP; Craig FE; Troyer D
    Br J Haematol; 1999 Dec; 107(4):731-8. PubMed ID: 10606877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.