These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35320292)

  • 1. Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses.
    Barnett-Neefs C; Sullivan G; Zoellner C; Wiedmann M; Ivanek R
    PLoS One; 2022; 17(3):e0265251. PubMed ID: 35320292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining Patterns of Persistent Listeria Contamination in Packinghouses Using Agent-Based Models.
    Barnett-Neefs C; Wiedmann M; Ivanek R
    J Food Prot; 2022 Dec; 85(12):1824-1841. PubMed ID: 36041081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-Genome Sequencing-Based Characterization of
    Sullivan G; Orsi RH; Estrada E; Strawn L; Wiedmann M
    Appl Environ Microbiol; 2022 Nov; 88(22):e0117722. PubMed ID: 36286532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EnABLe: An agent-based model to understand Listeria dynamics in food processing facilities.
    Zoellner C; Jennings R; Wiedmann M; Ivanek R
    Sci Rep; 2019 Jan; 9(1):495. PubMed ID: 30679513
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Sullivan G; Zoellner C; Wiedmann M; Ivanek R
    Appl Environ Microbiol; 2021 Oct; 87(21):e0079921. PubMed ID: 34406828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of
    Ruiz-Llacsahuanga B; Hamilton A; Zaches R; Hanrahan I; Critzer F
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Agent-Based Model for Pathogen Persistence and Cross-Contamination Dynamics in a Food Facility.
    Mokhtari A; Van Doren JM
    Risk Anal; 2019 May; 39(5):992-1021. PubMed ID: 30321463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of intervention strategies on Listeria contamination patterns in crawfish processing plants: a longitudinal study.
    Lappi VR; Thimothe J; Walker J; Bell J; Gall K; Moody MW; Wiedmann M
    J Food Prot; 2004 Jun; 67(6):1163-9. PubMed ID: 15222544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products.
    Aalto-Araneda M; Lundén J; Markkula A; Hakola S; Korkeala H
    Food Microbiol; 2019 Sep; 82():455-464. PubMed ID: 31027805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of cleaning and sanitation methods against Listeria innocua on apple packing equipment surfaces.
    Ruiz-Llacsahuanga B; Hamilton AM; Anderson K; Critzer F
    Food Microbiol; 2022 Oct; 107():104061. PubMed ID: 35953171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.
    Liu C; Duan J; Su YC
    Int J Food Microbiol; 2006 Feb; 106(3):248-53. PubMed ID: 16219378
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Kuttappan D; Muyyarikkandy MS; Mathew E; Amalaradjou MA
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of Listeria spp. in produce handling and processing facilities in the Pacific Northwest.
    Jorgensen J; Waite-Cusic J; Kovacevic J
    Food Microbiol; 2020 Sep; 90():103468. PubMed ID: 32336359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.
    Rückerl I; Muhterem-Uyar M; Muri-Klinger S; Wagner KH; Wagner M; Stessl B
    Int J Food Microbiol; 2014 Oct; 189():98-105. PubMed ID: 25136788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking of Listeria monocytogenes in meat establishment using Whole Genome Sequencing as a food safety management tool: A proof of concept.
    Nastasijevic I; Milanov D; Velebit B; Djordjevic V; Swift C; Painset A; Lakicevic B
    Int J Food Microbiol; 2017 Sep; 257():157-164. PubMed ID: 28666130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and Prevalence of Listeria in U.S. Produce Packinghouses and Fresh-Cut Facilities.
    Sullivan G; Wiedmann M
    J Food Prot; 2020 Oct; 83(10):1656-1666. PubMed ID: 32421820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad.
    Gibbons IS; Adesiyun A; Seepersadsingh N; Rahaman S
    Food Microbiol; 2006 Jun; 23(4):359-66. PubMed ID: 16943025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condensation Removal Practices and Their Potential for Contributing to Environmental Pathogen Contamination in Food Processing Facilities.
    Martinez BA; Bianchini A; Stratton J; Raabe O; Swanson S
    J Food Prot; 2021 Jun; 84(6):1047-1054. PubMed ID: 33465233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing Listeria monocytogenes contamination in artisanal cheese to the processing environments in cheese producers in southern Chile.
    Barría C; Singer RS; Bueno I; Estrada E; Rivera D; Ulloa S; Fernández J; Mardones FO; Moreno-Switt AI
    Food Microbiol; 2020 Sep; 90():103499. PubMed ID: 32336367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Listeria monocytogenes environmental sampling program in ready-to-eat processing facilities: A practical approach.
    Spanu C; Jordan K
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):2843-2861. PubMed ID: 33337052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.