BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 35320697)

  • 1. The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics.
    Nicholson SR; Rorrer JE; Singh A; Konev MO; Rorrer NA; Carpenter AC; Jacobsen AJ; Román-Leshkov Y; Beckham GT
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():301-324. PubMed ID: 35320697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closing the Carbon Loop in the Circular Plastics Economy.
    Schirmeister CG; Mülhaupt R
    Macromol Rapid Commun; 2022 Jul; 43(13):e2200247. PubMed ID: 35635841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future.
    Chen H; Wan K; Zhang Y; Wang Y
    ChemSusChem; 2021 Oct; 14(19):4123-4136. PubMed ID: 33998153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste.
    Jung H; Shin G; Kwak H; Hao LT; Jegal J; Kim HJ; Jeon H; Park J; Oh DX
    Chemosphere; 2023 Apr; 320():138089. PubMed ID: 36754297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic methods for chemical recycling or upcycling of commercial polymers.
    Kosloski-Oh SC; Wood ZA; Manjarrez Y; de Los Rios JP; Fieser ME
    Mater Horiz; 2021 Apr; 8(4):1084-1129. PubMed ID: 34821907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward polymer upcycling-adding value and tackling circularity.
    Korley LTJ; Epps TH; Helms BA; Ryan AJ
    Science; 2021 Jul; 373(6550):66-69. PubMed ID: 34210879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Recycling of Poly(Imine-Carbonate) Derived from Plastic Waste and Bio-based Resources.
    Saito K; Eisenreich F; Türel T; Tomović Ž
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202211806. PubMed ID: 36074694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review.
    Ma C; Kumagai S; Saito Y; Yoshioka T; Huang X; Shao Y; Ran J; Sun L
    Environ Sci Technol; 2024 Jan; 58(3):1423-1440. PubMed ID: 38197317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technologies for chemical recycling of household plastics - A technical review and TRL assessment.
    Solis M; Silveira S
    Waste Manag; 2020 Mar; 105():128-138. PubMed ID: 32058902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics.
    Worch JC; Dove AP
    ACS Macro Lett; 2020 Nov; 9(11):1494-1506. PubMed ID: 35617072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plastics integrated assessment model (PLAIA): Assessing emission mitigation pathways and circular economy strategies for the plastics sector.
    Stegmann P; Daioglou V; Londo M; Junginger M
    MethodsX; 2022; 9():101666. PubMed ID: 35369121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Upcycling of Waste Plastics to High Value-Added Products via Pyrolysis: Current Trends, Future Perspectives, and Techno-Feasibility Analysis.
    Hussain I; Aitani A; Malaibari Z; Alasiri H; Naseem Akhtar M; Fahad Aldosari O; Ahmed S
    Chem Rec; 2023 Apr; 23(4):e202200294. PubMed ID: 36850030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering.
    Lee GH; Kim DW; Jin YH; Kim SM; Lim ES; Cha MJ; Ko JK; Gong G; Lee SM; Um Y; Han SO; Ahn JH
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastics and the Sustainable Development Goals: From waste to wealth with microbial recycling and upcycling.
    Pereyra-Camacho MA; Pardo I
    Microb Biotechnol; 2024 Apr; 17(4):e14459. PubMed ID: 38588222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the circular economy via hydrothermal processing of high-density waste plastics.
    Helmer Pedersen T; Conti F
    Waste Manag; 2017 Oct; 68():24-31. PubMed ID: 28623021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective deconstruction of mixed plastics by a tailored organocatalyst.
    Arifuzzaman M; Sumpter BG; Demchuk Z; Do C; Arnould MA; Rahman MA; Cao PF; Popovs I; Davis RJ; Dai S; Saito T
    Mater Horiz; 2023 Aug; 10(9):3360-3368. PubMed ID: 37482885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of material flow analysis for plastic waste management in the Republic of Korea.
    Lee MY; Cho NH; Lee SJ; Um N; Jeon TW; Kang YY
    J Environ Manage; 2021 Dec; 299():113625. PubMed ID: 34482109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.