These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources. Reeves WR; McDonald TJ; Cizmas L; Donnelly KC Sci Total Environ; 2004 Oct; 332(1-3):183-92. PubMed ID: 15336901 [TBL] [Abstract][Full Text] [Related]
3. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K(DOC) values. Hawthorne SB; Grabanski CB; Miller DJ; Kreitinger JP Environ Sci Technol; 2005 Apr; 39(8):2795-803. PubMed ID: 15884378 [TBL] [Abstract][Full Text] [Related]
4. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers. Lu X; Skwarski A; Drake B; Reible DD Environ Toxicol Chem; 2011 May; 30(5):1109-16. PubMed ID: 21341305 [TBL] [Abstract][Full Text] [Related]
5. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Haftka JJ; Govers HA; Parsons JR Environ Sci Pollut Res Int; 2010 Jun; 17(5):1070-9. PubMed ID: 19953335 [TBL] [Abstract][Full Text] [Related]
6. Solid-phase microextraction to monitor the sonochemical degradation of polycyclic aromatic hydrocarbons in water. Psillakis E; Ntelekos A; Mantzavinos D; Nikolopoulos E; Kalogerakis N J Environ Monit; 2003 Feb; 5(1):135-40. PubMed ID: 12619768 [TBL] [Abstract][Full Text] [Related]
7. Comparison of In Situ and Ex Situ Equilibrium Passive Sampling for Measuring Freely Dissolved Concentrations of Parent and Alkylated Polycyclic Aromatic Hydrocarbons in Sediments. Reininghaus M; Parkerton TF; Witt G Environ Toxicol Chem; 2020 Nov; 39(11):2169-2179. PubMed ID: 32804440 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems. Lang SC; Hursthouse A; Mayer P; Kötke D; Hand I; Schulz-Bull D; Witt G Mar Pollut Bull; 2015 Dec; 101(1):296-303. PubMed ID: 26593280 [TBL] [Abstract][Full Text] [Related]
9. Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM. Gomes RB; Nogueira R; Oliveira JM; Peixoto J; Brito AG Environ Sci Pollut Res Int; 2009 Sep; 16(6):671-8. PubMed ID: 19290560 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Hyötyläinen T; Oikari A Chemosphere; 2004 Oct; 57(2):159-64. PubMed ID: 15294439 [TBL] [Abstract][Full Text] [Related]
11. Assessment of toxicity hazards of dredged lake sediment contaminated by creosote. Hyötyläinen T; Oikari A Sci Total Environ; 1999 Dec; 243-244():97-105. PubMed ID: 10635593 [TBL] [Abstract][Full Text] [Related]
12. Particle-scale measurement of PAH aqueous equilibrium partitioning in impacted sediments. Ghosh U; Hawthorne SB Environ Sci Technol; 2010 Feb; 44(4):1204-10. PubMed ID: 20099801 [TBL] [Abstract][Full Text] [Related]
13. Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments. Belháčová-Minaříková M; Smedes F; Rusina TP; Vrana B Environ Pollut; 2020 Dec; 267():115470. PubMed ID: 33254663 [TBL] [Abstract][Full Text] [Related]
14. Increasing the bioaccessibility of polycyclic aromatic hydrocarbons in sediment using ultrasound. Pee GY; Na S; Wei Z; Weavers LK Chemosphere; 2015 Mar; 122():265-272. PubMed ID: 25532768 [TBL] [Abstract][Full Text] [Related]
15. Bioavailability and distribution of PAHs and PCBs in the sediment pore water of the German Bight and Wadden Sea. Niehus NC; Brockmeyer B; Witt G Mar Pollut Bull; 2019 Jan; 138():421-427. PubMed ID: 30660291 [TBL] [Abstract][Full Text] [Related]
16. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Maruya KA; Lao W; Tsukada D; Diehl DW Chemosphere; 2015 Oct; 137():192-7. PubMed ID: 26246043 [TBL] [Abstract][Full Text] [Related]
17. Assessment of bioavailability and effects of chemicals due to remediation actions with caging mussels (Anodonta anatina) at a creosote-contaminated lake sediment site. Hyötyläinen T; Karels A; Oikari A Water Res; 2002 Nov; 36(18):4497-504. PubMed ID: 12418652 [TBL] [Abstract][Full Text] [Related]
18. The utility of solid-phase microextraction in evaluating polycyclic aromatic hydrocarbon bioavailability during habitat restoration with dredged material at moderately contaminated sites. Brennan AA; Johnson NW Integr Environ Assess Manag; 2018 Mar; 14(2):212-223. PubMed ID: 29045050 [TBL] [Abstract][Full Text] [Related]
19. An integrated assessment of sediment remediation in a midwestern U.S. stream using sediment chemistry, water quality, bioassessment, and fish biomarkers. Meier JR; Snyder S; Sigler V; Altfater D; Gray M; Batin B; Baumann P; Gordon D; Wernsing P; Lazorchak J Environ Toxicol Chem; 2013 Mar; 32(3):653-61. PubMed ID: 23233343 [TBL] [Abstract][Full Text] [Related]
20. PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Qi W; Liu H; Qu J; Ren H; Xu W Environ Sci Pollut Res Int; 2011 Mar; 18(3):346-54. PubMed ID: 20680698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]