BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35320780)

  • 1. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges.
    Jiang L; Woodington B; Carnicer-Lombarte A; Malliaras G; Barone DG
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord.
    Woodington BJ; Lei J; Carnicer-Lombarte A; Güemes-González A; Naegele TE; Hilton S; El-Hadwe S; Trivedi RA; Malliaras GG; Barone DG
    Sci Adv; 2024 May; 10(19):eadl1230. PubMed ID: 38718109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats.
    Harland B; Aqrawe Z; Vomero M; Boehler C; Cheah E; Raos B; Asplund M; O'Carroll SJ; Svirskis D
    Adv Sci (Weinh); 2022 Jul; 9(20):e2105913. PubMed ID: 35499184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 5. Can motor volition be extracted from the spinal cord?
    Prasad A; Sahin M
    J Neuroeng Rehabil; 2012 Jun; 9():41. PubMed ID: 22713735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable softening bioelectronics: A paradigm for chronically viable ester-free neural interfaces such as spinal cord stimulation implants.
    Garcia-Sandoval A; Guerrero E; Hosseini SM; Rocha-Flores PE; Rihani R; Black BJ; Pal A; Carmel JB; Pancrazio JJ; Voit WE
    Biomaterials; 2021 Oct; 277():121073. PubMed ID: 34419732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Dunham C; DeJong S; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2159-62. PubMed ID: 26736717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Van Acker G; DeJong S; Dunham C; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():486-9. PubMed ID: 25570002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural interfaces for the brain and spinal cord--restoring motor function.
    Jackson A; Zimmermann JB
    Nat Rev Neurol; 2012 Dec; 8(12):690-9. PubMed ID: 23147846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
    Mercier LM; Gonzalez-Rothi EJ; Streeter KA; Posgai SS; Poirier AS; Fuller DD; Reier PJ; Baekey DM
    J Neurophysiol; 2017 Feb; 117(2):767-776. PubMed ID: 27881723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis.
    Calvert JS; Grahn PJ; Strommen JA; Lavrov IA; Beck LA; Gill ML; Linde MB; Brown DA; Van Straaten MG; Veith DD; Lopez C; Sayenko DG; Gerasimenko YP; Edgerton VR; Zhao KD; Lee KH
    J Neurotrauma; 2019 May; 36(9):1451-1460. PubMed ID: 30430902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury.
    Shu B; Yang F; Guan Y
    Med Hypotheses; 2017 Jul; 104():73-77. PubMed ID: 28673596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord.
    Capogrosso M; Gandar J; Greiner N; Moraud EM; Wenger N; Shkorbatova P; Musienko P; Minev I; Lacour S; Courtine G
    J Neural Eng; 2018 Apr; 15(2):026024. PubMed ID: 29339580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury.
    Torregrosa T; Koppes RA
    Cells Tissues Organs; 2016; 202(1-2):6-22. PubMed ID: 27701161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord neural interfacing in common marmosets (Callithrix jacchus).
    Prins NW; Mylavarapu R; Shoup AM; Debnath S; Prasad A
    J Neural Eng; 2020 Jan; 17(1):016031. PubMed ID: 31480029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless control of intraspinal microstimulation in a rodent model of paralysis.
    Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL
    J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis.
    Grahn PJ; Mallory GW; Berry BM; Hachmann JT; Lobel DA; Lujan JL
    Front Neurosci; 2014; 8():296. PubMed ID: 25278830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.