These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35320780)

  • 21. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue.
    Wu GH; Shi HJ; Che MT; Huang MY; Wei QS; Feng B; Ma YH; Wang LJ; Jiang B; Wang YQ; Han I; Ling EA; Zeng X; Zeng YS
    Biomaterials; 2018 Oct; 181():15-34. PubMed ID: 30071379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiological characterization of spino-sciatic and cortico-sciatic associative plasticity: modulation by trans-spinal direct current and effects on recovery after spinal cord injury in mice.
    Ahmed Z
    J Neurosci; 2013 Mar; 33(11):4935-46. PubMed ID: 23486964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology for the Treatment of Spinal Cord Injury.
    Zimmermann R; Vieira Alves Y; Sperling LE; Pranke P
    Tissue Eng Part B Rev; 2021 Aug; 27(4):353-365. PubMed ID: 33135599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.
    Tator CH; Minassian K; Mushahwar VK
    Handb Clin Neurol; 2012; 109():283-96. PubMed ID: 23098720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury.
    Calvert JS; Grahn PJ; Zhao KD; Lee KH
    Neuromodulation; 2019 Apr; 22(3):244-252. PubMed ID: 30840354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review.
    Taylor C; McHugh C; Mockler D; Minogue C; Reilly RB; Fleming N
    PLoS One; 2021; 16(11):e0260166. PubMed ID: 34793572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opportunities and challenges for developing closed-loop bioelectronic medicines.
    Ganzer PD; Sharma G
    Neural Regen Res; 2019 Jan; 14(1):46-50. PubMed ID: 30531069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcutaneous electrical spinal-cord stimulation in humans.
    Gerasimenko Y; Gorodnichev R; Moshonkina T; Sayenko D; Gad P; Reggie Edgerton V
    Ann Phys Rehabil Med; 2015 Sep; 58(4):225-231. PubMed ID: 26205686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural signal recording and processing in somatic neuroprosthetic applications. A review.
    Raspopovic S; Cimolato A; Panarese A; Vallone F; Del Valle J; Micera S; Navarro X
    J Neurosci Methods; 2020 May; 337():108653. PubMed ID: 32114143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term changes in spinal cord evoked potentials after compression spinal cord injury in the rat.
    Vanický I; Ondrejcák T; Ondrejcáková M; Sulla I; Gálik J
    Cell Mol Neurobiol; 2006; 26(7-8):1521-39. PubMed ID: 16691438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Safety assessment of epidural wire electrodes for cough production in a chronic pig model of spinal cord injury.
    Kowalski KE; Kowalski T; DiMarco AF
    J Neurosci Methods; 2016 Aug; 268():98-105. PubMed ID: 27168496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury.
    Alves-Sampaio A; García-Rama C; Collazos-Castro JE
    Biomaterials; 2016 May; 89():98-113. PubMed ID: 26963900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glassy Carbon Neural Interface for Chronic Epidural Stimulation in Rats with Cervical Spinal Cord Injury.
    Samejima S; Hanna R; Cariappa BK; Arvizu R; Nimbalkar S; Montgomery-Walsh R; Galindo SL; Henderson R; Khorasani A; Moritz CT; Kassegne S
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large animal model for development of functional restoration paradigms using epidural and intraspinal stimulation.
    Hachmann JT; Jeong JH; Grahn PJ; Mallory GW; Evertz LQ; Bieber AJ; Lobel DA; Bennet KE; Lee KH; Lujan JL
    PLoS One; 2013; 8(12):e81443. PubMed ID: 24339929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable Ventral Spinal Stimulator Evokes Programmable and Biomimetic Hindlimb Motion.
    Lin D; Lee JM; Wang C; Park HG; Lieber CM
    Nano Lett; 2023 Jul; 23(13):6184-6192. PubMed ID: 37338198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysis.
    Gad P; Roy RR; Choe J; Zhong H; Nandra MS; Tai YC; Gerasimenko Y; Edgerton VR
    Prog Brain Res; 2015; 218():199-212. PubMed ID: 25890138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.